Imaging charge recombination dynamics in organic semiconductor films

有机半导体薄膜中的电荷复合动力学成像

基本信息

  • 批准号:
    2113994
  • 负责人:
  • 金额:
    $ 59.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY: Our economy requires energy to run. Sunlight is a free and essentially limitless source of energy. To exploit this energy source, economical solar cells that can convert sunlight into electrical current and voltage are needed. Existing silicon solar cells are too expensive to create, pattern, and install on a massive scale. Solar cells made from plastics and small molecules, on the other hand, can potentially be as inexpensive as paint to create and as easy as newsprint to pattern at high speed. Plastic/molecular solar cells are being intensely studied worldwide, but how these complex materials convert light to electricity remains a puzzle. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor John Marohn and his research group at Cornell University will develop methods for watching how electrical charges in a film activated by sunlight move and relax. The research team will utlizie a specialized microscope which enables the observation of charges moving distances of nanometers (one billionth of a meter) on the timescale of nanoseconds (one billionth of a second). By allowing the observation of charge motion at the molecular level, it is expected that these measurements will significantly advance our understanding of how plastic/molecular solar cell materials convert light into electricity. This research will open new ways to study semiconductor chips and batteries, two growth technologies central to our economy. Researchers funded by this project will develop virtual high-school science experiments on the physics of waves suitable for both in-person and remote learning.TECHNICAL SUMMARY: In the best organic photovoltaic materials, the photocarrier recombination time is anomalously long. If this anomalous behavior could be understood then it could be exploited to improve the open-circuit voltage and current of organic solar cells. This project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, will study charge generation and recombination in organic donor/acceptor (D/A) blends at nanoscale spatial resolution and nanosecond temporal resolution. Proposed experiments include scanning Kelvin probe force microscopy, measuring local electrostatic potential and electric field; broadband local dielectric spectroscopy, measuring local steady-state conductivity and energetic disorder; and "phase-kick" electric force microscopy (pk-EFM), measuring transient conductivity. Charge mobility will be studied in single-component films by simultaneously measuring device current and local electric field. Charge recombination transients in D/A blends prepared on both insulating and metallic substrates will be recorded using pk-EFM and compared to bulk time-resolved microwave conductivity measurements. The drift and diffusion of photogenerated charges in inhomogeneous D/A blends will be observed stroboscopically via pk-EFM. Films comprised of polymer donors with both fullerene and non-fullerene acceptors will be examined. It is expected that the microscopic material parameters gleaned from these measurements will enable the rigorous testing of charge-recombination hypotheses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:我们的经济需要能源运行。阳光是免费的,本质上无限的能源来源。为了利用这种能源,需要将阳光转化为电流和电压的经济太阳能电池。现有的硅太阳能电池太贵了,无法创建,模式和安装大规模。另一方面,由塑料和小分子制成的太阳能电池可能与油漆一样廉价,并且可以像高速的新闻报道一样容易创建。塑料/分子太阳能电池正在全球范围内进行深入研究,但是这些复杂的材料如何将光转换为电能仍然是一个难题。在材料研究部的固态和材料化学计划的支持下,约翰·马罗恩(John Marohn)及其研究小组的康奈尔大学(Cornell University)研究小组将开发出观察Sunlight Move and Halwiss激活的电影中电荷的方法。研究小组将占用专门的显微镜,使观察纳米秒(十亿秒的十亿秒)在纳米秒的时间范围内移动纳米(十亿米)的指控。通过允许在分子水平上观察电荷运动,预计这些测量值将显着提高我们对塑料/分子太阳能电池材料如何将光转化为电能的理解。这项研究将开辟新的方法来研究半导体芯片和电池,这是我们经济中心的两种增长技术。该项目资助的研究人员将开发有关适合面对面和远程学习的波的物理学的虚拟高中科学实验。技术摘要:在最佳的有机光伏材料中,光载体重组时间是无意的。如果可以理解这种异常行为,则可以利用它来改善有机太阳能电池的开路电压和电流。该项目在材料研究部的固态和材料化学计划的支持下,将研究有机供体/受体(D/A)在纳米级空间分辨率和纳秒时间分辨率的有机供体/受体(D/A)中的重组。建议的实验包括扫描开尔文探针力显微镜,测量局部静电电位和电场。宽带局部介电光谱,测量局部稳态电导率和能量障碍;和“相踢”电力显微镜(PK-EFM),测量瞬态电导率。通过同时测量设备电流和局部电场,将在单组分膜中研究电荷迁移率。在绝缘和金属底物上制备的D/A混合物中的电荷重组瞬变将使用PK-EFM记录,并将其与大量时间分辨的微波电导率测量值进行比较。将通过PK-EFM观察到频镜观察到光生的电荷在不均匀D/A混合物中的漂移和扩散。将检查由富勒烯和非富勒烯受体的聚合物供体组成的电影。预计从这些测量结果中收集的微观材料参数将能够对电荷重组假设进行严格的测试。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估标准来评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Marohn其他文献

Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Morning 2
咖啡时间 咖啡时间 咖啡时间 咖啡时间 咖啡时间 咖啡时间 上午 2
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Klein;John Marohn;Beat Meier;Jean;Dan Rugar;E. Cachan;Tremblay Tremblay
  • 通讯作者:
    Tremblay Tremblay
Proponents’ preliminary response to the Report of the Expert Panel to review the proposal for NEWREP-A
支持者对NEWREP-A提案审查专家小组报告的初步回应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Klein;John Marohn;Beat Meier;Jean;Dan Rugar;E. Cachan;Tremblay Tremblay
  • 通讯作者:
    Tremblay Tremblay

John Marohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Marohn', 18)}}的其他基金

Scanned-probe Characterization of Charge Generation, Recombination, and Motion in Organic Semiconductors
有机半导体中电荷产生、复合和运动的扫描探针表征
  • 批准号:
    1709879
  • 财政年份:
    2017
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Standard Grant
Scanned-probe characterization of degradation and charge generation in organic semiconductors
有机半导体降解和电荷产生的扫描探针表征
  • 批准号:
    1309540
  • 财政年份:
    2013
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Standard Grant
Scanned-Probe Characterization of Charge Trapping and Fluctuations in Organic Semiconductors
有机半导体中电荷捕获和波动的扫描探针表征
  • 批准号:
    1006633
  • 财政年份:
    2010
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Continuing Grant
Electric Force Microscopy Imaging of Fundamental Processes in Organic Electronic Materials
有机电子材料基本过程的电力显微镜成像
  • 批准号:
    0706508
  • 财政年份:
    2007
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Continuing Grant
Funding for Students to Attend an International Workshop at Cornell; Ithaca, NY; June 21-24, 2006
资助学生参加康奈尔大学国际研讨会;
  • 批准号:
    0634455
  • 财政年份:
    2006
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Standard Grant
CAREER: Variable Temperature Electric Force and Magnetic Resonance Force Microscopy Studies of Organic Electronic Materials
职业:有机电子材料的变温电力和磁共振力显微镜研究
  • 批准号:
    0134956
  • 财政年份:
    2002
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

城市路网考虑用户异质性的宏微观一体化复杂动态建模及多目标拥堵收费
  • 批准号:
    72301012
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于信息呈现与收费模式的平台治理研究
  • 批准号:
    72271217
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于活动方法的自动驾驶通勤建模与拥堵收费问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
    82271900
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

A new direction to achieve ultra-fast timing for positron emission tomography
实现正电子发射断层扫描超快定时的新方向
  • 批准号:
    9444922
  • 财政年份:
    2017
  • 资助金额:
    $ 59.26万
  • 项目类别:
Novel non-cell autonomous mechanisms of callosal dysgenesis in CHARGE syndrome
CHARGE综合征胼胝体发育不全的新型非细胞自主机制
  • 批准号:
    9259107
  • 财政年份:
    2016
  • 资助金额:
    $ 59.26万
  • 项目类别:
Regulation of CD28 Signaling in T cells by Cytoplasmic Domain Membrane Binding
通过细胞质域膜结合调节 T 细胞中的 CD28 信号转导
  • 批准号:
    8307875
  • 财政年份:
    2010
  • 资助金额:
    $ 59.26万
  • 项目类别:
Regulation of CD28 Signaling in T cells by Cytoplasmic Domain Membrane Binding
通过细胞质域膜结合调节 T 细胞中的 CD28 信号转导
  • 批准号:
    8085760
  • 财政年份:
    2010
  • 资助金额:
    $ 59.26万
  • 项目类别:
Heterostructured Quantum Dots as Molecular Probes: Chemistry and Photophysics
作为分子探针的异质结构量子点:化学和光物理学
  • 批准号:
    8136462
  • 财政年份:
    2008
  • 资助金额:
    $ 59.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了