Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning

协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍

基本信息

  • 批准号:
    2113954
  • 负责人:
  • 金额:
    $ 13.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The intersection of artificial intelligence (AI) and cybersecurity is emerging as an important field to ensure the integrity of the economy and critical infrastructure. Industry and government organizations require a workforce that is well-trained in both AI and cybersecurity. Courses and workshops are emerging to meet this need, but there is no published work addressing the content that needs to be taught and how to teach that content to develop a workforce at the intersection of AI and cybersecurity. This project addresses the gap in our understanding of how to prepare the workforce to apply AI to problems in cybersecurity by identifying workforce needs and developing solutions to learning barriers that could prevent broad participation in AI-enhanced cybersecurity. The project will create and disseminate an AI-enhanced cybersecurity course for advanced undergraduate and master's students and contribute new knowledge at the intersection of AI, cybersecurity, and education.This project will identify workforce training needs for AI-enhanced cybersecurity through interviews with industry experts. This will inform the development of a course for master's and advanced undergraduate students that addresses gaps in existing cybersecurity curricular frameworks. The hands-on course will serve as a testbed to identify key conceptual challenges, prerequisites, and compelling examples of AI-enhanced cybersecurity. The course will train students at the University of Washington Bothell in crucial AI-enhanced cybersecurity skills. Additionally, the project seeks to identify opportunities to broaden participation at the intersection of AI and cybersecurity. A better understanding of how computing majors perceive courses and careers in AI, cybersecurity, and the intersection of the two can inform efforts to broaden participation in AI-enhanced cybersecurity. This interdisciplinary collaboration will also prepare the project team to engage in education research at the intersection of AI and cybersecurity. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)和网络安全的交叉正在成为确保经济和关键基础设施完整性的重要领域。行业和政府组织需要一支在人工智能和网络安全方面接受过良好培训的员工队伍。为了满足这一需求,课程和研讨会不断涌现,但还没有发表的著作来解决需要教授的内容以及如何教授这些内容以培养人工智能和网络安全交叉领域的劳动力。该项目通过确定劳动力需求并开发解决可能阻碍广泛参与人工智能增强网络安全的学习障碍的解决方案,解决了我们对如何准备劳动力将人工智能应用于网络安全问题的理解差距。该项目将为高年级本科生和硕士生创建和传播人工智能增强网络安全课程,并在人工智能、网络安全和教育的交叉领域贡献新知识。该项目将通过采访行业专家来确定人工智能增强网络安全的劳动力培训需求。这将为硕士和高年级本科生课程的开发提供信息,以解决现有网络安全课程框架中的差距。该实践课程将作为一个测试平台,以确定人工智能增强网络安全的关键概念挑战、先决条件和令人信服的示例。该课程将为华盛顿大学博塞尔分校的学生提供关键的人工智能增强网络安全技能的培训。此外,该项目还寻求寻找机会扩大人工智能和网络安全交叉领域的参与。更好地了解计算机专业的学生如何看待人工智能、网络安全以及两者的交叉领域的课程和职业,可以为扩大人工智能增强网络安全的参与提供信息。这种跨学科合作还将帮助项目团队做好参与人工智能和网络安全交叉领域的教育研究的准备。该项目得到了安全可信网络空间 (SaTC) 计划特别倡议的支持,旨在促进网络安全、人工智能和教育领域之间新的、以前未探索过的合作。 SaTC 计划与联邦网络安全研究与发展战略计划和国家隐私研究战略相一致,旨在保护和维护网络系统不断增长的社会和经济效益,同时确保安全和隐私。该奖项反映了 NSF 的法定使命,并被认为值得获得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computing Specializations: Perceptions of AI and Cybersecurity Among CS Students
计算机专业:计算机科学学生对人工智能和网络安全的看法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Lagesse其他文献

You Had to Be There: Private Video Sharing for Mobile Phones using Fully Homomorphic Encryption
你必须在那里:使用全同态加密的手机私人视频共享
KeyGuard: Using Selective Encryption to Mitigate Keylogging in Third-Party IME
KeyGuard:使用选择性加密来减少第三方 IME 中的键盘记录
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Wang;Brent Lagesse
  • 通讯作者:
    Brent Lagesse
Limited Use Cryptographic Tokens in Securing Ephemeral Cloud Servers
有限使用加密令牌来保护临时云服务器
  • DOI:
    10.5220/0006208704470454
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gautam Kumar;Brent Lagesse
  • 通讯作者:
    Brent Lagesse
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo
  • 通讯作者:
    Albert Rizzo
UBCA: A Utility Based Clustering Architecture For Peer-to-peer Networks
UBCA:基于实用程序的点对点网络集群架构
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brent Lagesse
  • 通讯作者:
    Brent Lagesse

Brent Lagesse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brent Lagesse', 18)}}的其他基金

IRES Track 1: Secure Crowdsensing for Improving Smart City Applications
IRES 轨道 1:用于改进智能城市应用的安全群体感知
  • 批准号:
    1853953
  • 财政年份:
    2019
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
EDU: Enhancing Cybersecurity Education for Native Students Using Virtual Laboratories
EDU:利用虚拟实验室加强本土学生的网络安全教育
  • 批准号:
    1419313
  • 财政年份:
    2014
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了