SHF: Small: High-speed DNA polymerase CRNs for signal amplification, oscillation, consensus, and linear control

SHF:小型:高速 DNA 聚合酶 CRN,用于信号放大、振荡、一致性和线性控制

基本信息

  • 批准号:
    2113941
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The regulation of cellular and molecular processes typically involves complex biochemical processes, which are termed chemical reaction networks (CRNs). Synthetic CRNs using reactions on DNA molecules can be systematically designed to approximate sophisticated biochemical processes. However, most of the prior experimental protocols for CRNs relied on either DNA strand-displacement hybridization or enzymatic reactions, and the resulting synthetic systems usually suffer from either slow rates or leaky reactions. In contrast, much higher reaction rates can be obtained by the DNA enzyme strand-displacement polymerase (PSD). This project is investigating a wide variety of fast and robust CRNs using only DNA hybridization and PSD reactions. The project includes design, simulation, and experimental implementations. Further, the project is highly interdisciplinary and impacts interdisciplinary education at undergraduate and graduate levels. The project engages students (with emphasis on women and under-represented minorities) from different academic levels across multiple disciplines in mentoring and teaching. Hands-on demonstrations of DNA computing and CRNs are being designed for outreach programs at Duke and local high schools. Workshops and lectures are disseminating knowledge of advanced PSD-based nanoscience concepts to undergraduate and graduate student audiences. The regulation of cellular and molecular processes typically involves complex biochemical processes, which are termed chemical reaction networks (CRNs). Synthetic CRNs using reactions on DNA molecules can be systematically designed to approximate sophisticated biochemical processes. However, most of the prior experimental protocols for CRNs relied on either DNA strand-displacement hybridization or enzymatic reactions, and the resulting synthetic systems usually suffer from either slow rates or leaky reactions. In contrast, much higher reactions rates can be obtained by the DNA enzyme strand-displacement polymerase (PSD). This project is investigating a wide variety of fast and robust CRNs using only DNA hybridization and PSD reactions. The project includes design, simulation, and experimental implementations. The key CRNs investigated in this project include (i) an autocatalytic amplifier, (ii) a dynamic oscillatory system, (iii) a molecular-scale consensus protocol, and (iv) a linear control system. All of these CRNs have important practical applications. The project has already completed the design, simulation and preliminary experiments of some simple CRNs using PSD, including in silico demonstration of dynamic CRNs using PSD, which provided estimates of reaction rate, leak, and false positives for these simple CRNs. Further, the project has already completed the design, simulation & experimental demonstration of dynamic oscillatory CRN systems using PSD to identify the number of cycles, precision of cycles, sensitivity to initial concentrations and approximation to unit rates, etc. The project is now refining its initial designs for the key CRNs listed above. These are being simulated and optimized. Experimental demonstrations are being made of each CRN. The project has potentially a transformative impact on research in DNA CRNs due to the speed-ups. The speed-ups also significantly impact many applications of PSD-based CRNs: (a) the amplification CRNs allow speedy nucleic acid detection for diagnostic use in medicine and detection use for forensics, (b) the consensus CRNs allow multiple molecular-device voting, (c) the oscillation CRNs allow for synchronization of multiple repeated molecular-scale operations, and (d) the linear control CRNs allow for regulation of molecular concentrations, for control of a large variety of synthetic and natural biochemical systems. The project is investigating these applications (a-d) and plans to experimentally demonstrate at least one of them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞和分子过程的调节通常涉及复杂的生化过程,这些过程称为化学反应网络(CRN)。使用DNA分子上的反应的合成CRN可以系统地设计为近似复杂的生化过程。但是,CRN的大多数先前实验方案都依赖于DNA链 - 置换杂交或酶促反应,而所得的合成系统通常会遭受缓慢的速率或泄漏的反应。相比之下,可以通过DNA酶链脱位聚合酶(PSD)获得更高的反应速率。该项目仅使用DNA杂交和PSD反应研究了多种快速和健壮的CRN。 该项目包括设计,仿真和实验实现。此外,该项目是高度跨学科的,并影响了本科和研究生级别的跨学科教育。该项目与来自不同学科的不同学术级别的指导和教学学术层面的学生(重点关注女性和代表性不足的少数民族)。 DNA计算和CRN的动手演示是为杜克大学和当地高中的外展计划而设计的。讲习班和讲座正在传播有关基于PSD的高级纳米科学概念的知识,以了解本科和研究生的受众。细胞和分子过程的调节通常涉及复杂的生化过程,这些过程称为化学反应网络(CRN)。使用DNA分子上的反应的合成CRN可以系统地设计为近似复杂的生化过程。但是,CRN的大多数先前实验方案都依赖于DNA链 - 置换杂交或酶促反应,而所得的合成系统通常会遭受缓慢的速率或泄漏的反应。相比之下,DNA酶链脱位聚合酶(PSD)可以获得更高的反应速率。该项目仅使用DNA杂交和PSD反应研究了多种快速和健壮的CRN。 该项目包括设计,仿真和实验实现。该项目中研究的关键CRN包括(i)自催化放大器,(ii)动态振荡系统,(iii)分子尺度共识方案,以及(iv)线性控制系统。所有这些CRN都有重要的实际应用。该项目已经完成了使用PSD的一些简单CRN的设计,模拟和初步实验,包括使用PSD进行动态CRN的硅术演示,该psd提供了这些简单CRN的反应速率,泄漏和假阳性的估计。此外,该项目已经完成了使用PSD的动态振荡CRN系统的设计,仿真和实验演示,以确定周期的数量,循环的精度,对初始浓度的敏感性以及对单位速率的近似等等。这些正在模拟和优化。每个CRN都在实验演示。由于加速,该项目可能对DNA CRN的研究产生了变革性的影响。 The speed-ups also significantly impact many applications of PSD-based CRNs: (a) the amplification CRNs allow speedy nucleic acid detection for diagnostic use in medicine and detection use for forensics, (b) the consensus CRNs allow multiple molecular-device voting, (c) the oscillation CRNs allow for synchronization of multiple repeated molecular-scale operations, and (d) the linear control CRNs allow for调节分子浓度,以控制各种合成和自然生化系统。该项目正在调查这些申请(A-D),并计划在实验中至少证明其中一个。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D DNA Nanostructures: The Nanoscale Architect
  • DOI:
    10.3390/app11062624
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Fu, Daniel;Reif, John
  • 通讯作者:
    Reif, John
A survey on molecular-scale learning systems with relevance to DNA computing
与 DNA 计算相关的分子级学习系统调查
  • DOI:
    10.1039/d2nr06202j
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Nagipogu, Rajiv Teja;Fu, Daniel;Reif, John H.
  • 通讯作者:
    Reif, John H.
Multidimensional data organization and random access in large-scale DNA storage systems
大规模DNA存储系统中的多维数据组织和随机访问
  • DOI:
    10.1016/j.tcs.2021.09.021
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Song, Xin;Shah, Shalin;Reif, John
  • 通讯作者:
    Reif, John
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Reif其他文献

Planarity testing in parallel
  • DOI:
    10.1016/s0022-0000(05)80070-4
  • 发表时间:
    1994-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vijaya Ramachandran;John Reif
  • 通讯作者:
    John Reif
Space and Time Eecient Implementations of Parallel Nested Dissection
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Reif
  • 通讯作者:
    John Reif

John Reif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Reif', 18)}}的其他基金

NSF Student Travel Grant for Sixteenth Conference on the Foundations of Nanoscience (FNANO 2019)
第十六届纳米科学基础会议 NSF 学生旅费补助金 (FNANO 2019)
  • 批准号:
    1851695
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Distributed DNA Computations Operating on a Collection of Cell Membranes
SHF:小型:在细胞膜集合上运行的分布式 DNA 计算
  • 批准号:
    1909848
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Hot DNA Computation: Speeding up DNA-based Computation, CRNs, and Robotics using Strand-Displacing Polymerase
SHF:小型:热门 DNA 计算:使用链置换聚合酶加速基于 DNA 的计算、CRN 和机器人技术
  • 批准号:
    1813805
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Support of 15th Annual Conference on the Foundations of Nanoscience (FNANO 2018)
第十五届纳米科学基础年会 (FNANO 2018) 支持
  • 批准号:
    1748415
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Support of 14th Annual Conference on the Foundations of Nanoscience (FNANO 2017)
第十四届纳米科学基础年会 (FNANO 2017) 支持
  • 批准号:
    1709472
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: DNA Circuits for Analog Computations
SHF:小型:用于模拟计算的 DNA 电路
  • 批准号:
    1617791
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Localized DNA Hybridization Computation
SHF:小型:局部 DNA 杂交计算
  • 批准号:
    1320360
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Error Correction for Biomolecular Computations
SHF:小:生物分子计算的纠错
  • 批准号:
    1217457
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Exploratory Software Development & Experiments of Dynamic DNA Nanosystems
EAGER:探索性软件开发
  • 批准号:
    1141847
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EMT/NANO: Autonomous Programmable DNA Devices Using DNAzymes
EMT/NANO:使用 DNAzyme 的自主可编程 DNA 设备
  • 批准号:
    0829797
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子动力学演化量子速度极限的代数理论
  • 批准号:
    11504135
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
小基因组菌株基因组的优化和繁殖速度的提高
  • 批准号:
    31470213
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目
基于加速度响应信号的时变系统小波状态空间参数识别研究
  • 批准号:
    11172131
  • 批准年份:
    2011
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于小波变换的海洋声学参数获取方法研究
  • 批准号:
    10674149
  • 批准年份:
    2006
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
基于光学小波滤波和FBG技术分布式声发射波振动加速度测量的研究
  • 批准号:
    60377002
  • 批准年份:
    2003
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Commercialization Readiness for Nerve Tape: a nerve repair coaptation aid
神经胶带的商业化准备:神经修复接合辅助工具
  • 批准号:
    10698977
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Development and evaluation of a combined X-ray transmission and diffraction imaging system for pathology
用于病理学的组合 X 射线透射和衍射成像系统的开发和评估
  • 批准号:
    10699271
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
  • 批准号:
    10697560
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
A Uniquely Scalable Approach to Sequence Tens of Millions of Single Cells Without Compromising Performance
一种独特的可扩展方法,可在不影响性能的情况下对数千万个单细胞进行测序
  • 批准号:
    10700398
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了