CAREER: The exceptional biomechanics of legged locomotion in the microcosmos

职业:微观宇宙中腿部运动的卓越生物力学

基本信息

  • 批准号:
    2048235
  • 负责人:
  • 金额:
    $ 77.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) project combines biological experiments, mathematical modeling, and physical modeling to reveal the performance capabilities and constraints of legged locomotion in small invertebrates. When viewed on a relative scale, the fastest legged animals on the planet are the smallest of invertebrates. Organisms such as beetles, cockroaches, and mites are capable of running at speeds of tens to hundreds of body lengths per second. These remarkable feats of movement at the microscopic scale are enabled by strong limbs, robust foot attachment mechanics, and resilient exoskeleton structures that give these organisms locomotor capabilities vastly different from their larger counterparts. Yet smaller organisms also have to contend with incredibly complex and unstructured substrates that can impose step-to-step height variations equal to or larger than their leg length. This research will develop general principles of legged locomotion in complex environments which could contribute to the development of new legged robots that can move more effectively in unstructured environments. In parallel with the research aims, educational experiences for K-12, undergraduate, and academic professionals to better integrate living systems literacy into engineering curriculum will be developed. These activities include funded summer research experiences for underrepresented students in collaboration with a local Title 1 high school. At the college level, course development, hands-on training for undergraduate and graduate students, and interdisciplinary workshops for researchers in engineering and biology will be implemented. The overall goal of these efforts is to enable engagement, communication, and collaboration between engineers and biologists, facilitated through living systems literacy. This research project uses modeling and experiment to develop new geometric and dynamic scaling principles for legged locomotion in centimeter- and millimeter-scale organisms. Experiments will be performed with invertebrates that vary in size by four orders of magnitude in mass (the American cockroach, the Argentine ant, and the mite). To develop geometric scaling principles between animal morphology and natural substrates, a new experimental substrate-scanning platform to identify the three-dimensional topography of natural substrates will be developed. To study the dynamic scaling principles of force production and acceleration, new force measurement platforms to measure the ground-reaction forces involved in microscale legged locomotion will be developed. These experiments will be supported by physical modeling and computational modeling to elucidate scaling laws for dynamic and geometric phenomena in legged locomotion. The combination of experiments, modeling, and theory will improve our understanding of the biomechanics of microscale legged locomotion. The overall aim of this work is to contextualize the regimes of legged locomotion across the microscopic to macroscopic scales. The research and educational aims of this work are highly interdisciplinary. Graduate and high-school students will receive extensive training in biomechanics, physics, and engineering. Students will present results of these studies at robotics, physics, and biology conferences, and the outcomes will be published in interdisciplinary journals. Thus, the broader impacts include more focused understanding of legged biomechanics, new inspiration for legged robots, new understanding of natural substrates, and training of interdisciplinary scientists. This project was co-funded by the Physiological Mechanisms and Biomechanics Program in the BIO Division of Integrative Organismal Systems, the BIO Division of Biological Infrastructure Innovation Program, and the Biomechanics and Mechanobiology Program in the Engineering Directorate’s Civil, Mechanical, and Manufacturing Innovation Division.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(CAREER)项目结合了生物实验、数学模型和物理模型,揭示了小型无脊椎动物的腿运动的表现能力和限制。从相对规模来看,地球上最快的腿动物是最小的。甲虫、蟑螂和螨虫等无脊椎动物能够以每秒数十至数百个身体长度的速度奔跑,这些在微观尺度上的非凡运动是由它们实现的。强壮的四肢、坚固的足部附着机制和有弹性的外骨骼结构使这些生物体的运动能力与较大的四肢截然不同,但较小的生物体还必须应对极其复杂和非结构化的基质,这些基质可能会导致步与步之间的高度变化等于这项研究将开发复杂环境中腿式运动的一般原理,这可能有助于开发可以在非结构化环境中更有效地移动的新型腿式机器人,同时还可以提供教育经验。将开发 K-12、本科生和学术专业人士,以更好地将生命系统素养融入工程课程中,这些活动包括与当地一级高中合作,为代表性不足的学生提供资助的暑期研究经验、课程开发、将为本科生和研究生提供实践培训,并为工程和生物学研究人员举办跨学科研讨会,这些努力的总体目标是通过生命系统素养促进工程师和生物学家之间的参与、沟通和协作。研究项目利用建模和实验来开发新的几何厘米级和毫米级生物体的腿运动的动态缩放原理将用质量相差四个数量级的无脊椎动物(美洲蟑螂、阿根廷蚂蚁和螨虫)进行实验,以开发几何学。为了研究动物形态和自然基质之间的缩放原理,将开发一个新的实验基质扫描平台来识别天然基质的三维形貌,以研究力产生和加速度的动态缩放原理,新的力测量平台。将开发测量微尺度腿式运动中涉及的地面反作用力的实验,这些实验将得到物理模型和计算模型的支持,以阐明腿式运动中动态和几何现象的比例定律。提高我们对微尺度腿部运动的生物力学的理解这项工作的总体目标是从微观到宏观尺度研究腿部运动的机制。研究生和高中生将接受生物力学、物理学和工程学方面的广泛培训。学生将在机器人学、物理学和生物学会议上展示这些研究结果,并且结果将发表在更广泛的跨学科期刊上。影响包括对腿式生物力学的更集中的理解、对腿式机器人的新灵感、对自然基质的新理解以及跨学科科学家的培训该项目由生理机制和生物力学计划共同资助。综合有机系统 BIO 部门、生物基础设施创新计划 BIO 部门以及工程局土木、机械和制造创新部门的生物力学和机械生物学计划。该奖项反映了 NSF 的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The bumpy road ahead: the role of substrate roughness on animal walking and a proposed comparative metric
前方的道路崎岖不平:基质粗糙度对动物行走的作用以及拟议的比较指标
  • DOI:
    10.1242/jeb.245261
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Clifton, Glenna;Stark, Alyssa Y.;Li, Chen;Gravish, Nicholas
  • 通讯作者:
    Gravish, Nicholas
Directionally Compliant Legs Enabling Crevasse Traversal in Small Ground‐Based Robots
方向顺应腿可实现小型地面机器人的裂缝穿越
  • DOI:
    10.1002/aisy.202200258
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Lathrop, Emily;Tolley, Michael T.;Gravish, Nick
  • 通讯作者:
    Gravish, Nick
Walking is like slithering: A unifying, data-driven view of locomotion
行走就像滑行:统一的、数据驱动的运动视图
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Gravish其他文献

A Reconfigurable Soft Linkage Robot via Internal "Virtual" Joints.
通过内部“虚拟”关节可重构的软连杆机器人。
  • DOI:
    10.1089/soro.2023.0177
  • 发表时间:
    2024-04-29
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Mingsong Jiang;Jiansong Wang;Nicholas Gravish
  • 通讯作者:
    Nicholas Gravish

Nicholas Gravish的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Gravish', 18)}}的其他基金

Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
  • 批准号:
    2335477
  • 财政年份:
    2023
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
EFRI C3 SoRo: Control of Local Curvature and Buckling for Multifunctional Textile-Based Robots
EFRI C3 SoRo:多功能纺织机器人的局部曲率和屈曲控制
  • 批准号:
    1935324
  • 财政年份:
    2019
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
EAGER: Modeling the Interaction Physics between Soft-structures and Granular Materials
EAGER:模拟软结构和颗粒材料之间的相互作用物理
  • 批准号:
    1837662
  • 财政年份:
    2018
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant

相似国自然基金

基于个性化神经肌肉骨骼模型的脑卒中髋关节肌肉协同异常的生物力学机制研究
  • 批准号:
    32301090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跟骨骨折术后步态异常与康复策略的生物力学机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
肌/骨源性坐骨股骨撞击致髋关节运动学和动力学异常的生物力学机制
  • 批准号:
    32101054
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
神经肌肉兴奋变化结合肌肉生物力学参数模型研究脑卒中痉挛肌张力异常的机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
气道平滑肌生物力学行为异常与哮喘病理机制关系的研究
  • 批准号:
    11532003
  • 批准年份:
    2015
  • 资助金额:
    320.0 万元
  • 项目类别:
    重点项目

相似海外基金

Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338502
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
  • 批准号:
    2328407
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
  • 批准号:
    2328407
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338503
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
The capacity for exceptional brain repair in a novel rodent species.
一种新型啮齿动物具有特殊的大脑修复能力。
  • 批准号:
    DP240102825
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了