Mean-Field Models in Statistics
统计学中的平均场模型
基本信息
- 批准号:2113414
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Frequently in high dimensional Bayesian models, the posterior distribution is complicated and exhibits non-trivial dependence. Understanding the behavior of such models, both theoretically and empirically, is a challenge. In these situations, variational inference provides an efficient and scalable method of inference, when more traditional methods based on Markov Chain Monte Carlo are computationally prohibitive. One of the most common techniques for variational inference is the naive mean field approximation. However, despite its wide usage, not much is known about rigorous guarantees for the naive mean field method. This project aims to address this question, by studying the validity of naive mean field methods for several examples of interest.This project defines a formal notion of correctness of the naive mean field approximation, which requires that the leading order of the log normalizing constant of the high dimensional distribution is predicted correctly by the mean field prediction formula. This definition does not require the high dimensional distribution of interest to arise as a posterior distribution. If the naive mean field approximation is indeed asymptotically correct, the high dimensional distribution of interest should be well approximated by a mixture of product distributions. If further, the optimization in the mean field prediction formula has a unique maximizer, then essentially the high dimensional distribution should be close to a product measure, and it is natural enquire about Law of Large Numbers, Concentration, Fluctuations, and Asymptotic Properties of Estimators. The PI plans to study these questions for three concrete examples: (a) (Bayesian) Linear Regression, (b) (Bayesian) Mixture of Gaussians, and (c) Exponential Random Graph Models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通常在高维贝叶斯模型中,后部分布很复杂,并且表现出非平凡的依赖性。理论上和经验上了解这种模型的行为是一个挑战。在这些情况下,当基于马尔可夫链蒙特卡洛的更传统的方法在计算上,变异推理提供了一种有效且可扩展的推理方法。变异推断的最常见技术之一是幼稚的平均场近似。但是,尽管使用广泛,但对幼稚平均野外方法的严格保证并不多。该项目的目的是通过研究幼稚平均场方法对几个感兴趣的示例的有效性来解决这个问题。本项目定义了幼稚平均场近似正确性的正式概念,这要求通过平均野外预测公式正确预测高尺寸分布的对数正常化的正常化顺序。该定义不需要高维分布作为后验分布。如果幼稚的平均场近似确实在渐近上正确,则应通过产物分布的混合物很好地近似兴趣的高维分布。如果进一步,平均场预测公式中的优化具有独特的最大化器,则本质上,高维分布应接近产品度量,并且自然要查询估计量的大量,浓度,波动和渐近性能的定律。 PI计划在三个具体示例中研究这些问题:(a)(贝叶斯)线性回归,(b)(贝叶斯)高斯人的混合物以及(c)指数的随机图模型。该奖项反映了NSF的法定任务,并且通过评估该基金会的知识绩效和广泛的影响,认为NSF的法定任务值得通过评估值得进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sumit Mukherjee其他文献
Activation of the Plasmodium egress effector subtilisin-like protease 1 is achieved by plasmepsin X destruction of the propiece
疟原虫出口效应子枯草杆菌蛋白酶 1 的激活是通过 Plasmepsin X 破坏原片段来实现的
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sumit Mukherjee;Armiyaw S. Nasamu;Kelly Rubiano;D. Goldberg - 通讯作者:
D. Goldberg
Gas-Phase Acid-Base Properties of Melamine and Cyanuric Acid
- DOI:
10.1016/j.jasms.2010.06.002 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Sumit Mukherjee;Jianhua Ren - 通讯作者:
Jianhua Ren
Continuous order identification of PHWR models under step-back for the design of hyper-damped power tracking controller with enhanced reactor safety
- DOI:
10.1016/j.nucengdes.2013.01.001 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Sumit Mukherjee;Shantanu Das;Indranil Pan;Amitava Gupta - 通讯作者:
Amitava Gupta
Persistence exponents in Markov chains
马尔可夫链中的持久性指数
- DOI:
10.1214/20-aihp1114 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Frank Aurzada;Sumit Mukherjee;Ofer Zeitouni - 通讯作者:
Ofer Zeitouni
Elucidating evolutionary features and functional implications of orphan genes in <em>Leishmania major</em>
- DOI:
10.1016/j.meegid.2015.03.031 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:
- 作者:
Sumit Mukherjee;Arup Panda;Tapash Chandra Ghosh - 通讯作者:
Tapash Chandra Ghosh
Sumit Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sumit Mukherjee', 18)}}的其他基金
Modeling Spin Configurations and Ranking
自旋配置和排序建模
- 批准号:
1712037 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
基于公共数据挖掘的工业场地风险关键驱动因子作用机制研究
- 批准号:42307576
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滨海高盐低渗场地LNAPLs污染物赋存状态识别与运移机制研究
- 批准号:42372335
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
- 批准号:42302320
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
交通循环荷载高填黄土场地桩-土界面力学性能弱化与累积沉降研究
- 批准号:42362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Mean-field theory for random geometric graph and its application to mathematical models
随机几何图的平均场理论及其在数学模型中的应用
- 批准号:
19K14613 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Direct estimation of turbulent transport coefficients in solar mean-field dynamo models
太阳平均场发电机模型中湍流输运系数的直接估计
- 批准号:
19K14756 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Boltzmann-type and mean-field models in socio-economic applications
社会经济应用中的玻尔兹曼型和平均场模型
- 批准号:
EP/P01240X/1 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Research Grant
Stability and Structure of Gibbs' Measures in Mean-field Spin Glass Models
平均场自旋玻璃模型中吉布斯测度的稳定性和结构
- 批准号:
1205781 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Standard Grant