CAREER: Epsilon-Near-Zero Conducting Oxide Metasurface Perfect Absorbers, Color Filters, and Beam Steering Devices with Gate-tunability

职业:Epsilon 近零导电氧化物超表面完美吸收器、滤色片和具有栅极可调性的光束转向器件

基本信息

  • 批准号:
    2113010
  • 负责人:
  • 金额:
    $ 50.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Conventional optical components from lenses to filters are playing a critical role in modern imaging and display technologies, such as an optical camera's image sensor, the smartphone's display, and precise optical-imaging microscopy. However, there is an ongoing pressure to shrink the size of optical systems. Metasurfaces, which are ultrathin surfaces patterned with nanostructures, provide a new method to control the phase and amplitude of transmitted, reflected, and scattered light. Because of the virtually flat nature of metasurfaces (typical thickness 100 nm), they can enable novel ultrathin optical components such as flat lenses, waveplates, and holography surfaces over a broad range of the electromagnetic spectrum. However, the optical properties for most metasurfaces are fixed upon their nanofabrication, restricting many real-world applications. Therefore, there is a need to develop a tunable version of an ultrathin metasurface. The first goal of this project is to establish electronically-tunable conducting oxide metasurfaces that could be used for a variety of next-generation imaging and display technologies (e.g. tunable perfect absorber, color filter, beam steering device, etc.). The second goal of this project is to utilize our nanophotonic research and infrastructure to provide two-year technical college students, university undergraduate students, and graduate students with the nanophotonic skills and knowledge necessary for future academic and industrial careers. Furthermore, the project's events with area schools and a local science museum will provide exciting opportunities to introduce nanophotonic concepts to students and the general public in a fun and informative way. Technical description: Optical metasurfaces are single- or few-layer structures with subwavelength thickness which produce abrupt changes in the phase, amplitude, or polarization of light. They show promise for extraordinary light manipulation and could enable novel ultrathin optical elements such as flat lenses, holograms, and optical vortex generation/detection devices. While metasurfaces hold considerable promise for future fundamental advances and novel optical applications, the lack of efficient optical tunability and low optical efficiency are key limiting issues for their use in a wide range of optical applications. The long range goal of this project is to develop an integrated program of research and education focused on developing efficient nanoscale metasurface components and their applications in meta-devices. The objective of this CAREER research is to establish an efficient and broadband electrical management of the absorptivity, optical phase, and spectral response of conducting oxide metasurfaces under an Epsilon-Near-Zero (ENZ) regime. To achieve this objective, the PI will identify approaches which yield efficient control of the carrier concentration of conducting oxide materials and the ENZ frequency with field-effect tunable metasurface resonance and gradient-index ENZ multilayer via atomic layer deposition. Establishing techniques to efficiently exploit the voltage-tuned ENZ resonance in metasurfaces to manipulate optical responses will enable development of tunable metasurface beam steering devices, color filters, and perfect absorbers, opening the path to revolutionary nano-optical imaging, display, and communication applications. Examples of novel devices that would utilize the technology include high-resolution beam steering devices for next generation visible LIDAR technology, perfect absorbers/spectrum splitting elements for photo/thermal-voltaic applications, tunable color filters/lenses for CMOS optical imaging and cutting-edge smartphone microscopies/spectroscopies, and ultrafast spatial light modulators with nanoscale pixels. The educational objective is to integrate research and classroom activities based on advanced nanophotonic technology for training two-year technical college students, university undergraduate students, and graduate students with the nanophotonic skills and knowledge necessary for future academic and industrial careers.
从镜头到过滤器的传统光学组件在现代成像和显示技术中起着至关重要的作用,例如光学相机的图像传感器,智能手机的显示以及精确的光学成像显微镜。但是,缩小光学系统大小的持续压力。具有纳米结构的超薄表面的metasurfaces提供了一种新的方法来控制传输,反射和散射光的相位和振幅。由于元整日(典型厚度为100 nm)几乎具有平坦的性质,因此它们可以在广泛的电磁谱范围内实现新颖的超薄光学组件,例如平面透镜,波动板和全息表面。但是,大多数元信息的光学性质在其纳米化作用后固定在其纳米化时,从而限制了许多现实世界的应用。因此,有必要开发超薄元图的可调版本。该项目的第一个目标是建立可用于各种下一代成像和展示技术(例如,可调的完美吸收器,颜色滤光器,横梁转向装置等)的可用于各种下一代成像和展示技术的电导的导电氧化物元面。该项目的第二个目标是利用我们的纳米光学研究和基础设施为两年的技术大学生,大学本科生以及研究生提供未来学术和工业职业所必需的纳米光学技能和知识。此外,该项目在地区学校和当地科学博物馆的活动将提供令人兴奋的机会,以一种有趣而有益的方式向学生和公众介绍纳米光子概念。技术描述:光学元面是单层或几层结构,其次波长厚度会在光的相,幅度或极化中突然变化。它们显示出对非凡的光操作的希望,并可以实现新颖的超薄光学元素,例如扁平透镜,全息图和光涡流的生成/检测设备。虽然Metasurfaces对未来的基本进步和新颖的光学应用具有很大的希望,但缺乏有效的光学可调性和低光学效率是其在广泛的光学应用中使用的关键限制问题。该项目的远距离目标是制定一项综合研究和教育计划,旨在开发有效的纳米级跨表面组件及其在元设备中的应用。这项职业研究的目的是建立对在Epsilon-near-Zero(ENZ)制度下进行氧化物跨境的吸收性,光相和光谱响应的有效和宽带电气管理。为了实现这一目标,PI将确定通过可通过原子层沉积的磁场效应的元素偏置共振和梯度索引多层层的田间效应可调式元面共振和梯度索引ENZ多层的有效控制载体浓度的方法。建立技术以有效利用元整日中的电压调整的ENZ共振来操纵光学响应,将有助于开发可调的跨表面束转向设备,颜色过滤器和完美的吸收器,并为革命性的纳米光学成像,显示器和通信应用程序打开了途径。使用该技术的新型设备的示例包括用于下一代可见光雷达技术的高分辨率光束转向设备,用于照片/热量伏特加应用的完美吸收器/光谱拆分元素,可调色过滤器/CMOS光学镜头,用于CMOS光学成像和最先进的智能手机微观智能手机微观/镜头和超级模式。教育目标是将基于先进的纳米光学技术的研究和课堂活动整合,以培训两年学院的学生,大学本科生,并具有未来学术和工业职业所必需的纳米光学技能和知识的研究生。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Field enhancement of epsilon-near-zero modes in realistic ultrathin absorbing films
  • DOI:
    10.1515/nanoph-2022-0816
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    A. Anopchenko;Sudip Gurung;Subhajit Bej;H. W. Lee
  • 通讯作者:
    A. Anopchenko;Sudip Gurung;Subhajit Bej;H. W. Lee
Full-color generation enabled by refractory plasmonic crystals
  • DOI:
    10.1515/nanoph-2022-0071
  • 发表时间:
    2022-05-06
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Chiao, Zong-Yi;Chen, Yu-Chia;Lu, Yu-Jung
  • 通讯作者:
    Lu, Yu-Jung
Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications
  • DOI:
    10.1088/1361-6633/ac2aaf
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    18.1
  • 作者:
    Jingyi Yang;Sudip Gurung;Subhajit Bej;P. Ni;Ho Wai Howard Lee
  • 通讯作者:
    Jingyi Yang;Sudip Gurung;Subhajit Bej;P. Ni;Ho Wai Howard Lee
Optimized Titanium Nitride Epitaxial Film for Refractory Plasmonics and Solar Energy Harvesting
  • DOI:
    10.1021/acs.jpcc.1c03053
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ragini Mishra;Ching-Wen Chang;A. Dubey;Zong-Yi Chiao;T. Yen;Ho Wai Howard Lee;Yu-Jung Lu;S. Gwo
  • 通讯作者:
    Ragini Mishra;Ching-Wen Chang;A. Dubey;Zong-Yi Chiao;T. Yen;Ho Wai Howard Lee;Yu-Jung Lu;S. Gwo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ho Wai Howard Lee其他文献

Ho Wai Howard Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ho Wai Howard Lee', 18)}}的其他基金

PFI-TT: Metasurface-Optical Fiber Endoscopy Probe for Advanced Imaging
PFI-TT:用于高级成像的超表面光纤内窥镜探头
  • 批准号:
    2345825
  • 财政年份:
    2024
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Standard Grant
CAREER: Epsilon-Near-Zero Conducting Oxide Metasurface Perfect Absorbers, Color Filters, and Beam Steering Devices with Gate-tunability
职业:Epsilon 近零导电氧化物超表面完美吸收器、滤色片和具有栅极可调性的光束转向器件
  • 批准号:
    1752295
  • 财政年份:
    2018
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Standard Grant
MRI: Acquisition of 30kV Electron Beam Lithography System for Multidisciplinary Research on Nano-Photonics, Nano-Biophysics, Nano-Chemistry, and Nano-Electronics
MRI:购置30kV电子束光刻系统,用于纳米光子学、纳米生物物理学、纳米化学和纳米电子学的多学科研究
  • 批准号:
    1828416
  • 财政年份:
    2018
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Standard Grant

相似国自然基金

Epsilon-变形菌氧气感知蛋白与应答因子的作用机制研究
  • 批准号:
    32100097
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
光场流形结构下Epsilon频谱分解与计算成像
  • 批准号:
    62171044
  • 批准年份:
    2021
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
拟南芥DNA聚合酶epsilon调控减数分裂异染色质浓缩的分子机制
  • 批准号:
    32000246
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
Epsilon-变形菌新型趋化作用调控因子以及信号转导蛋白的作用机理研究
  • 批准号:
    31870064
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
DNA聚合酶 epsilon (Polε)催化亚基及其下游驱动基因突变在上皮性卵巢癌中的作用及分子机制
  • 批准号:
    81760474
  • 批准年份:
    2017
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Achieving a tunable hybrid plasmonic-semiconductor laser incorporating epsilon-near-zero materials
实现结合ε近零材料的可调谐混合等离子体半导体激光器
  • 批准号:
    569945-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
STTR Phase I: Algorithmic Mid-Infrared Spectroscope Utilizing Narrow-Band, Epsilon-Near-Zero Thermal Emitters
STTR 第一阶段:利用窄带、Epsilon 近零热发射器的算法中红外光谱仪
  • 批准号:
    2014798
  • 财政年份:
    2020
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Standard Grant
Nonlinear Optics using Epsilon Near Zero Materials
使用 Epsilon 近零材料的非线性光学
  • 批准号:
    2179928
  • 财政年份:
    2019
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Studentship
CAREER: Epsilon-Near-Zero Conducting Oxide Metasurface Perfect Absorbers, Color Filters, and Beam Steering Devices with Gate-tunability
职业:Epsilon 近零导电氧化物超表面完美吸收器、滤色片和具有栅极可调性的光束转向器件
  • 批准号:
    1752295
  • 财政年份:
    2018
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Standard Grant
All-dielectric plasmonics based on epsilon-near-zero materials
基于ε近零材料的全电介质等离子体激元
  • 批准号:
    2119209
  • 财政年份:
    2018
  • 资助金额:
    $ 50.03万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了