CAREER: Collective mechanics, particle transport and morphological adaptation in living multiphase matter: from mechanisms to the control of microbial swarms and films
职业:活多相物质中的集体力学、粒子输运和形态适应:从微生物群和薄膜的机制到控制
基本信息
- 批准号:2047210
- 负责人:
- 金额:$ 52.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This CAREER award will support an integrated research and education plan to study and model the formation and evolution of living multiphase materials - microbial swarms and films. Bacterial and fungal colonies constitute a significant fraction of the biomass on earth. These organisms cause more than two-thirds of human disease including most hospital-acquired infections. Bacteria and fungi typically colonize surfaces and tissue by forming rapidly spreading multicellular swarms and growing fibrous films. The goal of this research is to understand the mechanisms by which these form and to quantifying emergent properties of the composite. The knowledge gained can inspire new technologies to control bacterial and fungal infections in physiologically relevant settings. The research team will investigate the fundamental physical and biochemical mechanisms that underlie formation, growth, and adaptability in microbial swarms and films. The team will use the bacteria Serratia marcescens and Escherichia coli, and the fungus Candida albicans as model experimental systems. Experimental data will be used to develop and test analytical theories and numerical models to identify and understand the mechanisms involved. Insights obtained in the research will be useful in several fields including tissue engineering, soft matter, swarm robotics, and microbiology. The award will also enhance undergraduate and graduate bioengineering curricula through the design of new courses with both wet and dry laboratory components based on the proposed research. The research team will also create a series of customizable, standalone and modular graphics and visualization heavy “SynLab” toolkits and applications inspired by this research. These will be implemented in K- 12 classrooms to motivate students toward STEM careers. The award will enhance education, contribute to community directed outreach, and provide research opportunities for undergraduate and graduate students, especially those from underrepresented groups, including American Indian youth in the Central Valley region of California. Bacteria and fungi cause more than two-thirds of human infections, separately and sometimes as coexisting communities. In the infectious phase, these microbes colonize surfaces by forming rapidly spreading multicellular swarms and films. These living multiphase composites, while composed of independent agents (units), exhibit bulk macroscale properties, and remarkable collective response and adaptations. There are significant gaps in our understanding of how biomechanical and physicochemical mechanisms initiate, develop and stabilize such collective response and composite properties. This project aims to study these fundamental questions through a comprehensive and integrated research, general education and community-engaged outreach program. The research plan builds on the following foundational hypothesis: active multi-scale multiphase frameworks provide a novel, complete and insightful means to interrogate, analyze and understand microbial swarms and films. The PI and his group will combine experiments on the bacteria Serratia marcescens and Escherichia coli, and the fungus Candida albicans, with multiphase continuum theories and stochastic agent-based simulations to understand the collective mechanics, particle transport and morphological adaptation in collectively moving swarms and rapidly growing fungal films. The specific aims are to: 1) interrogate and understand how micro-scale mechanics and transport, cell-cell interactions, and physicochemical interactions control the onset of collective multicellular swarms and films; 2) track evolution of mesoscale spatiotemporal properties and morphology in these composites and quantify any adaptations in response to external flow, chemical, and mechanical perturbations; 3) synthesize experiments with first-principles continuum theories, minimal models and stochastic simulations to identify physical mechanisms underlying the stability of bacteria/fungal microbiomes; 4) significantly enhance undergraduate and graduate bioengineering curricula by incorporating dry and wet laboratory components; 5) create a series of customizable modular graphics based standalone applications inspired by this research; and 6) provide research opportunities for underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖将支持一项综合研究和教育计划,以研究和模拟活体多相材料(微生物群和薄膜)的形成和进化。细菌和真菌菌落构成了地球上生物量的重要部分,这些生物体导致了两种以上的生物体。三分之一的人类疾病,包括大多数医院获得性感染,细菌和真菌通常通过形成快速传播的多细胞群和生长纤维膜来定殖。研究小组将研究这些形成、生长和适应性的基本物理和生化机制。该团队将使用细菌粘质沙雷氏菌和大肠杆菌以及真菌白色念珠菌作为模型实验系统,用于开发和测试分析理论和数值。该奖项还将增强通过设计新课程获得的本科生和研究生生物工程课程。基于拟议研究的湿式和干式实验室组件,研究团队还将创建一系列可定制、独立和模块化的图形和可视化重型“SynLab”工具包和应用程序,这些工具包和应用程序将在 K- 中实施。 12 个教室激励学生从事 STEM 职业,该奖项将加强教育,促进社区宣传,并为本科生和研究生提供研究机会,特别是那些来自弱势群体的学生,包括加利福尼亚州中央山谷地区的美国印第安青年。超过三分之二的人类感染是由微生物和真菌引起的,它们是单独的,有时是共存的群落。在感染阶段,这些微生物通过形成快速传播的多细胞群和薄膜而在表面定殖,这些活的多相复合物由独立的病原体组成。 (单位),表现出大量的宏观特性以及显着的集体反应和适应,我们对生物力学和物理化学机制如何启动、发展和稳定这种集体反应和复合特性的理解存在重大差距。该研究计划建立在以下基本假设之上:主动的多尺度多阶段框架提供了一种新颖、完整和富有洞察力的方法来询问、分析和理解微生物。 PI 和他的团队将结合粘质沙雷氏菌和大肠杆菌以及真菌白色念珠菌的实验与多相连续理论和基于随机代理的模拟,以了解集体的集体力学、粒子传输和形态适应。移动的群和快速生长的真菌膜的具体目标是:1)询问并了解微观力学和运输、细胞与细胞的相互作用以及物理化学相互作用控制集体多细胞群和薄膜的发生;2)跟踪这些复合材料中尺度时空特性和形态的演化,并量化对外部流动、化学和机械扰动的任何适应;3)利用第一原理连续体综合实验;理论、最小模型和随机模拟,以确定细菌/真菌微生物组稳定性的物理机制;4) 通过整合,显着增强本科生和研究生的生物工程课程;干和湿实验室组件;5) 受这项研究的启发,创建一系列基于可定制的模块化图形的独立应用程序;6) 为代表性不足的学生提供研究机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ambient Fluid Rheology Modulates Oscillatory Instabilities in Filament-Motor Systems
环境流体流变学调节灯丝电机系统中的振荡不稳定性
- DOI:10.3389/fphy.2022.895536
- 发表时间:2022-06
- 期刊:
- 影响因子:3.1
- 作者:Tamayo, Joshua;Mishra, Anupam;Gopinath, Arvind
- 通讯作者:Gopinath, Arvind
Glycosaminoglycans and glycoproteins influence the elastic response of synovial fluid nanofilms on model oxide surfaces
糖胺聚糖和糖蛋白影响模型氧化物表面滑液纳米膜的弹性响应
- DOI:10.1016/j.colsurfb.2022.112407
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Mann, Amar S.;Smith, Ariell M.;Saltzherr, Joyce O.;Gopinath, Arvind;Andresen Eguiluz, Roberto C.
- 通讯作者:Andresen Eguiluz, Roberto C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arvind Gopinath其他文献
Natural and Engineered Isoforms of the Inflammasome Adaptor ASC Form Noncovalent, pH-Responsive Hydrogels.
炎性体适配器 ASC 的天然和工程亚型形成非共价、pH 响应性水凝胶。
- DOI:
10.1021/acs.biomac.3c00409 - 发表时间:
2023-11-06 - 期刊:
- 影响因子:6.2
- 作者:
Eduardo A Gaspar;Anthony Waterston;Mourad Sadqi;Pedro Diaz;Ariell M. Smith;Arvind Gopinath;Roberto C. Andresen Eguiluz;E. de Alba - 通讯作者:
E. de Alba
Multi-population dissolution in confined active fluids
- DOI:
10.1039/d3sm01196h - 发表时间:
2024-02 - 期刊:
- 影响因子:3.4
- 作者:
Cayce Fylling;Joshua Tamayo;Arvind Gopinath;Maxime Theillard - 通讯作者:
Maxime Theillard
Particle diffusion in active fluids is non-monotonic in size
- DOI:
10.1039/c5sm02800k - 发表时间:
2016-01 - 期刊:
- 影响因子:3.4
- 作者:
Alison E. Patteson;Arvind Gopinath;Prashant K. Purohit;Paulo E. Arratia - 通讯作者:
Paulo E. Arratia
Synchronized oscillations, traveling waves, and jammed clusters induced by steric interactions in active filament arrays
- DOI:
10.1039/d0sm01162b - 发表时间:
2020-11 - 期刊:
- 影响因子:3.4
- 作者:
Raghunath Chelakkot;Michael F. Hagan;Arvind Gopinath - 通讯作者:
Arvind Gopinath
Arvind Gopinath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arvind Gopinath', 18)}}的其他基金
Collaborative Research: Bacteria surface sensing and biofilm development
合作研究:细菌表面传感和生物膜开发
- 批准号:
2026782 - 财政年份:2020
- 资助金额:
$ 52.59万 - 项目类别:
Standard Grant
相似国自然基金
活性粒子在非恒定流场中的动力学和集体行为
- 批准号:12304247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于工程化干细胞聚集体构建具有结构-力学梯度椎间盘类器官及其再生修复研究
- 批准号:82372419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
给受分子聚集体非辐射复合动力学的超快光谱研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
溶液相由非化学键作用形成的聚集体结构和动力学研究
- 批准号:22273090
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
介观尺度分子聚集体的非绝热动力学理论研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 52.59万 - 项目类别:
Integrative biophysical modeling for collective tissue mechanics
集体组织力学的综合生物物理建模
- 批准号:
10711311 - 财政年份:2023
- 资助金额:
$ 52.59万 - 项目类别:
Radioactive Decontamination in Fukushima and the Fabric of Collective Memory
福岛的放射性净化和集体记忆的结构
- 批准号:
22KF0044 - 财政年份:2023
- 资助金额:
$ 52.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Contribution of cell mechanics in promoting collective behavior for supracellular migration
细胞力学在促进超细胞迁移集体行为中的贡献
- 批准号:
10680022 - 财政年份:2023
- 资助金额:
$ 52.59万 - 项目类别:
Leader cell development and function in Breast Tumor Collective Migration
乳腺肿瘤集体迁移中领导细胞的发育和功能
- 批准号:
10446803 - 财政年份:2022
- 资助金额:
$ 52.59万 - 项目类别: