Collaborative Research: PM: RUI - Searches for Ultralight Bosonic Dark Matter with Atomic Magnetometer Networks
合作研究:PM:RUI - 使用原子磁力计网络搜索超轻玻色暗物质
基本信息
- 批准号:2110370
- 负责人:
- 金额:$ 27.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Astrophysical observations indicate that up to 85% of the matter in the universe is unlike the matter that makes up our everyday world. What is this so-called dark matter? The answer to that question remains a mystery. One possibility is that dark matter could be in the form of large-scale structures (many times the size of the Earth) that couple weakly to ordinary matter. Another possibility is that the dark matter could be in the form of waves of varying intensity. If such structures or waves were to pass through the Earth they might interact with atoms and cause effects similar to those from a magnetic field. This grant will provide support for three undergraduate institutions, California State University – East Bay, Oberlin College, and Bucknell University, to work with an international team to search for dark matter of this kind. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a collaboration of fifteen institutions throughout the world that have constructed precision atomic magnetometers that are capable of detecting such signals from dark matter. The data from the magnetometer network are analyzed to look for correlations that would indicate the Earth’s passage through dark matter structures or waves. The principal investigators will work with undergraduate students to develop more sensitive detectors for the network, analyze the network data, and work with the worldwide collaboration to detect dark matter. These measurements will give insight into the possible forms of dark matter and lead to a better understanding of the makeup of our universe while providing crucial research experience and training for the next generation of scientists. A well-motivated candidate for dark matter consists of ultralight bosons such as axions, axion-like particles (ALPs), or hidden photons with very low mass (much less than 1 eV). Ultralight bosonic fields can form stable, macroscopic configurations such as topological defects or boson stars due to, for example, self-interactions. Even in the absence of such effects, bosonic dark matter fields exhibit stochastic fluctuations. Additionally, it is possible that cataclysmic astrophysical events could produce intense bursts of exotic ultralight bosonic fields. In any of these scenarios, instead of being bathed in a uniform flux, terrestrial detectors will witness transient events when ultralight bosonic fields pass through Earth. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of more than a dozen time-synchronized optical atomic magnetometers searching for correlated signals that is sensitive to transient signals due to spin-dependent interactions with ultralight bosonic fields. GNOME magnetometers have multi-layer magnetic shields that reduce external magnetic noise but allow most types of bosonic dark matter to penetrate within with no loss of sensitivity. A prominent exception is hidden photons, whose signals can be significantly reduced by shielding. To search for hidden photon dark matter, the principal investigators and undergraduate researchers will construct a new network of unshielded magnetometers, based on the GNOME architecture, located in magnetically quiet environments. The proposed experiments will probe a wide range of unexplored parameter space describing ultralight bosonic fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
天体物理学观测表明,宇宙中高达 85% 的物质与构成我们日常世界的物质不同,这个问题的答案仍然是个谜。另一种可能性是,暗物质可能以不同强度的波的形式存在,如果这种结构或波存在的话。它们穿过地球时可能会与原子相互作用并产生影响与来自磁场的暗物质类似,这笔赠款将为加州州立大学东湾分校、欧柏林学院和巴克内尔大学这三所本科院校提供支持,以与国际团队合作寻找此类暗物质。寻找奇异物理的光学磁力计 (GNOME) 是世界各地 15 个机构的合作项目,这些机构构建了能够检测来自暗物质的此类信号的精密原子磁力计。分析来自磁力计网络的数据以寻找相关性。将表明地球穿过暗物质结构或波。主要研究人员将与本科生合作,为网络开发更灵敏的探测器,分析网络数据,并与全球合作探测暗物质。这些测量将深入了解可能的情况。暗物质的形式,可以更好地了解我们宇宙的构成,同时为下一代科学家提供重要的研究经验和培训。暗物质的候选者包括轴子、类轴子粒子等超轻玻色子。 (碱性磷酸酶),或质量非常低(远小于 1 eV)的隐藏光子,由于自相互作用等原因,超轻玻色子场可以形成稳定的宏观构型,例如拓扑缺陷或玻色子星。此外,在任何这些情况下,灾难性的天体物理事件都可能产生强烈的超光玻色子场,而不是沐浴在统一的环境中。当超轻玻色子场穿过地球时,地面探测器将目睹瞬态事件,用于搜索奇异物理的全球光学磁力计网络(GNOME)是一个由十多个时间同步光学原子磁力计组成的网络,用于搜索相关信号。由于与超轻玻色子场的自旋相关相互作用,对瞬态信号敏感。GNOME 磁力计具有多层磁屏蔽,可减少外部磁噪声,但允许大多数类型的玻色子暗物质穿透。一个突出的例外是隐藏光子,其信号可以通过屏蔽而显着减少,主要研究人员和本科生研究人员将基于 GNOME 构建一个新的非屏蔽磁力计网络。所提出的实验将探索描述超轻玻色子场的各种未探索的参数空间。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和评估进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Stalnaker其他文献
Jason Stalnaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Stalnaker', 18)}}的其他基金
Collaborative Research (RUI): Search for Exotic Transient Spin-dependent Signals from Ultralight Dark Matter Fields
合作研究(RUI):从超轻暗物质场中寻找奇异的瞬态自旋相关信号
- 批准号:
1707803 - 财政年份:2017
- 资助金额:
$ 27.63万 - 项目类别:
Continuing Grant
RUI: Precision Spectroscopy of High-Lying States of Atomic Lithium
RUI:高能态锂原子的精密光谱分析
- 批准号:
1305591 - 财政年份:2013
- 资助金额:
$ 27.63万 - 项目类别:
Continuing Grant
相似国自然基金
miR-200b-5p/SIRT1/PGC-1α调控线粒体-内质网结构偶联在PM2.5致认知发育障碍中的机制研究
- 批准号:82301338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PM2.5调控KLF9/CYP1A1转录轴引起滋养细胞氧化应激损伤导致不良妊娠结局的机制研究
- 批准号:82301903
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
季节性PM2.5组分对精神分裂症复发的影响及机制研究
- 批准号:42375184
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
地理时空视角下中国PM2.5环境不平等量化评估及形成机制研究
- 批准号:42301092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGR3介导禽舍PM2.5微生物气溶胶免疫损伤机制研究
- 批准号:32300087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 27.63万 - 项目类别:
Standard Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309274 - 财政年份:2023
- 资助金额:
$ 27.63万 - 项目类别:
Standard Grant
Collaborative Research: PM: RUI: Searches for Ultralight Bosonic Dark Matter with Atomic Magnetometer Networks
合作研究:PM:RUI:利用原子磁力计网络搜索超轻玻色暗物质
- 批准号:
2110385 - 财政年份:2021
- 资助金额:
$ 27.63万 - 项目类别:
Continuing Grant
Collaborative Research: PM: CeNTREX, A Search for Nuclear Time-Reversal Symmetry Violation with Quantum-State-Controlled TlF Molecules
合作研究:PM:CeNTREX,利用量子态控制的 TlF 分子寻找核时间反转对称性破坏
- 批准号:
2110405 - 财政年份:2021
- 资助金额:
$ 27.63万 - 项目类别:
Standard Grant
Collaborative Research: PM: CeNTREX, A Search for Nuclear Time-Reversal Symmetry Violation with Quantum-State-Controlled TlF Molecules
合作研究:PM:CeNTREX,利用量子态控制的 TlF 分子寻找核时间反转对称性破坏
- 批准号:
2110420 - 财政年份:2021
- 资助金额:
$ 27.63万 - 项目类别:
Standard Grant