RUI: Microwave to Optical Frequency Conversion Through Six-wave Mixing

RUI:通过六波混频实现微波到光频率转换

基本信息

  • 批准号:
    2110357
  • 负责人:
  • 金额:
    $ 24.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

General audience abstract:Quantum computation and optical communication require coherent light sources over a wide range of frequencies. The ability to convert between the “telecom” wavelengths used in optical fiber networks and those used for atomic systems in quantum computation is an important part of furthering communications technology, and would allow more effective information sharing throughout society. This work focuses on the fundamental quantitative interactions between atoms and light, and how these interactions can be used to generate coherent sources at novel wavelengths. Atoms in highly energetic quantum states have been shown to be extremely sensitive to microwaves, providing the impetus for their use in microwave to optical frequency conversion. Many promising quantum computation schemes use microwave transitions to control quantum states, while optical fiber technology makes use of high transmission in the infrared. As a result, this frequency conversion could be an essential part of coupling quantum computation systems to telecom systems. Additionally, as a Research in Undergraduate Institutions project, this work will have a significant effect on the further development of the experimental physics workforce, helping to prepare and motivate undergraduate students for careers in science by developing their skills in experimental technique, data analysis, computation, and scientific communication.Technical audience abstract:Using four lasers which are readily attainable, hot rubidium atoms can be used to generate a coherent infrared source dependent on the application of microwaves or vice-versa. The process makes use of rubidium atoms excited to Rydberg levels with n50, such that transitions between nearby states are resonant with microwave frequencies. The primary objective of this work is to demonstrate the feasibility of using six-wave mixing in hot rubidium atoms as a microwave-infrared frequency conversion method. Through the simultaneous application of multiple lasers connecting atomic states in a process called wave mixing, new directional and coherent light sources, both optical and microwave, will be produced and the process of their generation optimized. Power and frequency characteristics of their output will be explored as a function of the power, polarization and frequency of the input sources, as well as the Rydberg state used. This research will provide analysis of wave mixing in rubidium atoms, which has the potential to greatly advance the scientific community's understanding of six-wave mixing. While four-wave mixing has been extensively investigated and used, higher wave-mixing remains relatively unexplored. The use of higher wave-mixing allows the exploration of novel wavelengths for coherent light while still using common and convenient atomic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通受众摘要:量子计算和光通信需要宽频率范围内的相干光源,在光纤网络中使用的“电信”波长与量子计算中原子系统中使用的波长之间进行转换的能力是进一步发展的重要组成部分。这项工作的重点是原子和光之间的基本定量相互作用,以及如何利用这些相互作用产生新波长的高能量子态原子的相干源。极其敏感微波,为微波到光学频率转换的应用提供动力,许多有前景的量子计算方案使用微波跃迁来控制量子态,而光纤技术则利用红外的高传输率。此外,作为本科院校的研究项目,这项工作将对实验物理队伍的进一步发展产生重大影响,帮助为本科生从事科学事业做好准备和激励。通过培养他们的实验技能技术、数据分析、计算和科学通信。技术受众摘要:使用容易获得的四个激光器,热铷原子可用于根据微波的应用产生相干红外源,反之亦然。用 n50 激发到里德伯能级的铷原子,使得附近状态之间的跃迁与微波频率共振。这项工作的主要目的是证明在热铷原子中使用六波混合的可行性。通过在波混合过程中同时应用连接原子态的多个激光器,将产生新的定向和相干光源(光学和微波),并优化其生成过程。将探索其输出的频率特性作为输入源的功率、极化和频率以及所使用的里德堡态的函数,这项研究将提供对铷原子中的波混合的分析,这有可能大大推进。科学界的理解虽然四波混频已经被研究和使用,但更高的波混频仍然相对未经探索。更高的波混频的使用允许探索相干光的新波长,同时仍然广泛使用常见和方便的原子系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A low-cost confocal microscope for the undergraduate lab
适用于本科生实验室的低成本共焦显微镜
  • DOI:
    10.1119/5.0128277
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Reguilon, A.;Bethard, W.;Brekke, E.
  • 通讯作者:
    Brekke, E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Brekke其他文献

Erik Brekke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

播后微波特征指数和成熟期光学湿润指数协同的直播水稻高精度识别研究
  • 批准号:
    42301442
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光学短时傅里叶变换的微波时频分析技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
顾及云雾干扰的林区可燃物含水率光学和微波遥感联合反演
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光学-微波-再分析联合的北极夏季海雾探测方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于光学欠采样的宽带高灵敏度微波相位噪声测量方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
  • 批准号:
    2329017
  • 财政年份:
    2023
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Continuing Grant
重鉱物の微小領域化学分析による津波堆積物と台風・高潮堆積物との判別手法の開発
开发通过重矿物微区化学分析区分海啸沉积物和台风/风暴潮沉积物的方法
  • 批准号:
    22K18874
  • 财政年份:
    2023
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
  • 批准号:
    10697183
  • 财政年份:
    2023
  • 资助金额:
    $ 24.8万
  • 项目类别:
Highly Efficient Magnon-Mediated Microwave-to-Optical Converter Using a Disk-shaped Ferromagnetic Insulator
使用盘形铁磁绝缘体的高效磁振子介导微波光转换器
  • 批准号:
    23KJ1209
  • 财政年份:
    2023
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-speed processing of low-loss optical waveguides by controlling the distribution of electron excitation using spatial light modulation
通过空间光调制控制电子激发分布来高速处理低损耗光波导
  • 批准号:
    22K20399
  • 财政年份:
    2022
  • 资助金额:
    $ 24.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了