Searching for the Stochastic Gravitational Wave Background with Advanced Gravitational Wave Detectors

用先进的引力波探测器寻找随机引力波背景

基本信息

  • 批准号:
    2110238
  • 负责人:
  • 金额:
    $ 44.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This award supports research in gravitational waves data analysis and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Stochastic gravitational-wave background arises as an incoherent superposition of many gravitational wave signals generated by uncorrelated astrophysical and cosmological sources throughout the universe. Measuring the astrophysical component of this background, for example due to mergers of black holes and/or neutron stars, would provide information about how the structure in the universe formed. Similarly, measuring the cosmological component of this background would provide unique information about the universe when it was a fraction of a second old, and about the physical laws that apply to very high energy scales that are not reproducible in laboratories. This project aims to search and detect the stochastic gravitational wave background using the upcoming Advanced LIGO, Virgo, and Kagra data, as well as to characterize its composition and study implications for different astrophysical and cosmological models. The project will enable involvement of undergraduate and graduate students in frontier research, and it will promote gravitational-wave science to the general public.Stochastic gravitational-wave background (SGWB) arises as an incoherent superposition of many gravitational wave signals generated by uncorrelated astrophysical or cosmological sources throughout the universe. This project aims to search for (and detect) the SGWB using the upcoming aLIGO, aVirgo, and KAGRA data from the fourth observing run (O4) in 2022/23, leveraging the improved detector sensitivities expected for O4 and deploying two search techniques. The traditional cross-correlation based search is expected to be 10 times more sensitive than the most recent results based on the first three observation runs, with another factor of 4 improvement expected with the A+ detector sensitivities in 2024 and beyond. For the specific case of the SGWB due to binary black hole mergers, the full Bayesian Search will be developed with the potential to improve the sensitivity by ~1000 times relative to the cross-correlation search. These searches will probe the high-redshift distribution of the compact binary systems and provide information about their formation and evolution. They will also constrain cosmological SGWB models, such as inflationary, phase transitions, and cosmic (super)string models, and therefore probe the physics of fundamental interactions at very high energies, unachievable in laboratories. Both the cross-correlation and the Bayesian SGWB searches will estimate the directional content of the SGWB, enabling future studies correlating the SGWB with electromagnetic tracers of matter structure in the universe, such as galaxy counts or gravitational lensing. In addition to involving graduate and undergraduate students in frontier research, this project includes a series of activities designed to bring the excitement of the gravitational-wave science to broad communities in the Twin Cities and Minnesota, including physics demonstrations and presentations in K-12 schools and data analysis projects for implementation in K-12 classrooms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持引力波数据分析的研究,它涉及NSF“宇宙中的Windows”的优先领域。随机引力波背景是由整个宇宙中不相关的天体物理和宇宙学来源产生的许多引力波信号的不一致的叠加。例如,由于黑洞和/或中子星的合并,测量了这种背景的天体物理成分,将提供有关宇宙结构如何形成的信息。同样,测量此背景的宇宙学组成部分将在宇宙的一小部分中提供有关宇宙的独特信息,以及有关在实验室中不可再现的非常高能量尺度的物理定律。该项目旨在使用即将到来的高级LIGO,处女座和Kagra数据来搜索和检测随机引力波背景,并表征其组成和研究对不同天体物理和宇宙学模型的含义。该项目将使本科生和研究生参与边境研究,并将向公众促进引力波科科学。整体引力波背景(SGWB)是许多引力波信号的不连贯叠加,该引力波信号由无关的天体或宇宙学源中无关的许多引力浪潮产生。该项目的目的是使用即将到来的第四个观测运行(O4)的Aligo,Avirgo和Kagra数据来搜索(并检测)SGWB,该数据利用了预期的O4预期的改进的检测器敏感性并部署了两种搜索技术。基于前三个观察跑步的最新结果,基于互相关的传统搜索的敏感性将比最新结果高10倍,而2024年及以后的A+检测器敏感性则预期为4倍。对于由于二进制黑洞合并而导致的SGWB的特定情况,将开发完整的贝叶斯搜索,以相对于互相关搜索提高敏感性约1000倍。这些搜索将探测紧凑型二进制系统的高红移分布,并提供有关其形成和进化的信息。它们还将限制宇宙学SGWB模型,例如通货膨胀,相变和宇宙(超级)字符串模型,因此探测了在实验室中无法实现的很高能量的基本相互作用的物理学。互相关和贝叶斯SGWB搜索都将估计SGWB的方向含量,从而使未来的研究能够将SGWB与宇宙中物质结构的电磁示踪剂相关联,例如星系计数或重力镜片。 除了让毕业生和本科生参与边境研究外,该项目还包括一系列活动,旨在将引力波浪科学的兴奋带到双城和明尼苏达州的广泛社区,包括K-12学校的物理演示和演示文献和演示,以及在K-12的课堂上的实施,以表现出NSF的宣传和数据分析项目。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vuk Mandic其他文献

Maximum-likelihood approach for signal estimation in direct detection experiments for Dark Matter
  • DOI:
    10.1016/j.nima.2005.07.018
  • 发表时间:
    2005-11-21
  • 期刊:
  • 影响因子:
  • 作者:
    Vuk Mandic;Bernard Sadoulet;Richard W. Schnee
  • 通讯作者:
    Richard W. Schnee
Stochastic gravitational wave background from binary black hole mergers dynamically assembled in dense star clusters
致密星团中动态组装的双黑洞合并的随机引力波背景
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xiao;G. Fragione;Vuk Mandic
  • 通讯作者:
    Vuk Mandic
A stochastic gravitational wave background in LISA from unresolved white dwarf binaries in the large magellanic cloud
LISA 中来自大麦哲伦星云中未解析的白矮星双星的随机引力波背景
On the Stochastic Gravitational Wave Background from Binary Black Hole Mergers Dynamically Assembled in Dense Star Clusters
致密星团中动态聚集的双黑洞合并的随机引力波背景
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao;G. Fragione;Vuk Mandic
  • 通讯作者:
    Vuk Mandic
Polymer tunneling vibration sensors using hot embossing technique
  • DOI:
    10.1016/j.sna.2022.113705
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jungyoon Kim;Tianyi Zhang;Peng Zhou;Quan Guan;Yingming Xu;John Sartori;Lauren Linderman;Vuk Mandic;Tianhong Cui
  • 通讯作者:
    Tianhong Cui

Vuk Mandic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vuk Mandic', 18)}}的其他基金

Minnesota Partnership to Foster Native American Participation in Astrophysics
明尼苏达州合作促进美洲原住民参与天体物理学
  • 批准号:
    2318841
  • 财政年份:
    2023
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308988
  • 财政年份:
    2023
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Standard Grant
NRT-WoU: Research Training Opportunities in the Nascent Field of Multi-Messenger Astrophysics
NRT-WoU:多信使天体物理学新兴领域的研究培训机会
  • 批准号:
    1922512
  • 财政年份:
    2019
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Standard Grant
Advanced LIGO Search for the Stochastic Gravitational Wave Background
随机引力波背景的高级 LIGO 搜索
  • 批准号:
    1806630
  • 财政年份:
    2018
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant
Searching for the Stochastic Gravitational-Wave Background with Advanced LIGO
利用先进的 LIGO 寻找随机引力波背景
  • 批准号:
    1505870
  • 财政年份:
    2015
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant
INSPIRE Track 1: Three-Dimensional Seismometer Array at the Homestake Mine
INSPIRE 轨道 1:Homestake 矿的三维地震仪阵列
  • 批准号:
    1344265
  • 财政年份:
    2013
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant
Searching for Long-Lasting Gravitational-Wave Signals with Second-Generation Gravitational-Wave Detectors
用第二代引力波探测器寻找持久的引力波信号
  • 批准号:
    1204944
  • 财政年份:
    2012
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant
Deep Underground Gravity Lab
地下深处重力实验室
  • 批准号:
    0939669
  • 财政年份:
    2010
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Standard Grant
Searching for Stochastic Gravitational-Wave Background with LIGO: Data Analysis and Detector Development
使用 LIGO 搜索随机引力波背景:数据分析和探测器开发
  • 批准号:
    0758036
  • 财政年份:
    2008
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

随机引力波背景和原初黑洞的相关研究
  • 批准号:
    12247112
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
随机引力波背景及其各向异性相关研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机引力波背景及其各向异性相关研究
  • 批准号:
    12105060
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
电弱相变产生随机引力波相关的新物理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
原初黑洞与随机引力波背景的相关研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
  • 批准号:
    23KF0247
  • 财政年份:
    2023
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2400301
  • 财政年份:
    2023
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant
Physics of the stochastic gravitational wave background
随机引力波背景物理学
  • 批准号:
    2894458
  • 财政年份:
    2023
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Studentship
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2207270
  • 财政年份:
    2022
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Continuing Grant
Searching for the stochastic background gravitational waves by evaluating the Earth's resonant magnetic noise in the international observatory network
通过评估国际天文台网络中的地球共振磁噪声来寻找随机背景引力波
  • 批准号:
    22K14062
  • 财政年份:
    2022
  • 资助金额:
    $ 44.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了