Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs

合作研究:来自量子液滴

基本信息

  • 批准号:
    2110038
  • 负责人:
  • 金额:
    $ 20.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The realm of Bose-Einstein condensates (BECs) was originally proposed as a curious feature of the statistical properties of atomic particles with integer spin by Bose and Einstein in the 1920's. This consisted of the condensation of the excited states particles into the ground state of the system and the formation of a macroscopic, coherent “super-wave” therein, allowing the study and observation of quantum mechanical properties beyond microscopic scales. However, the temperatures needed for its experimental realization were so low that it took about 70 years for E.A. Cornell, W. Ketterle, and C.E. Wieman to realize BECs in the lab. The importance of this feat was recognized only a few years later via the 2001 Nobel Prize in Physics. This has, in turn, enabled a pristine platform where numerous exciting features of nonlinear dynamics of waves and coherent structures can be studied and experimentally observed. Importantly, these coherent structures are also of wide applicability in numerous other areas of physics including, most notably, nonlinear optics, plasma physics, and water waves. Within atomic physics, BECs have also been fundamental toward the study of remarkable quantum features such as superconductivity and superfluidity and, in that capacity, they have been front and center toward the experimental discoveries connected to the vortices and their lattices cited in the 2003 Nobel Prize in Physics and the topological phases and their transitions associated with the 2016 Nobel Prize in Physics. The aim of this project is to advance the state-of-the-art at this exciting nexus of atomic physics theory, physical BEC experiments, applied mathematical analysis, and the forefront of scientific computing, while at the same time training a new generation of scientists and mathematicians at this scientific interface and transcending disciplinary boundaries. In line with the past trajectory of the PIs, an emphasis on the diversity, equity and inclusion of under-represented groups will be sought within this research effort.More concretely, the principal thrust of the present project consists of the study of non-trivial extensions of standard BEC settings. In particular, the main axes of the proposal consider the following themes. (1) Two-component mutually attractive BECs that allow, through quantum corrections and the famous Lee-Huang-Yang (LHY) contribution, for the highly timely formation of so-called quantum droplets. The key realization for such droplets is that their emergence stems from the interplay between repulsive mean-field and attractive beyond-mean-field contributions. (2) Three (F =1) and five (F=2) spin component settings supporting symbiotic (dark-antidark and dark-bright) solitary wave structures with unprecedented integrable or weakly non-integrable properties. (3) 3D vortex knot structures in one and multi-component/spinor settings. Vortex knots constitute one of the most elusive types of vortical structures for which limited experimental and theoretical analysis exists. The PIs will also explore in the spinor settings complex non-trivial topological patterns such as Alice rings and Dirac monopoles. (4) Topologically nontrivial toroidal trapping settings, where the interplay of the intrinsic metric and curvature of the system with the effective nonlinearity can yield unprecedented coherent structures and dynamics thereof. More broadly within this theme, the PIs will study nonlinear waves such as solitons and vortices confined on different types of curved surfaces. This ambitious program should push the boundaries of the state-of-the-art mean-field-theoretic understanding, offering numerous beyond-mean-field insights and elucidating their range of validity as well as the interplay of nonlinearity with quantum, as well as thermodynamic effects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Bose-Einstein冷凝物(BEC)的境界最初是作为1920年代Bose和Einstein用整数自旋的原子颗粒的统计特性的一个奇怪特征。这包括激发态颗粒进入系统基态的凝结以及其中的宏观,连贯的“超波”的形成,从而可以研究和观察显微镜尺度以外的量子机械性能。但是,其实验性实现所需的温度如此之低,以至于E.A.花了70年的时间。 Cornell,W。Ketterle和C.E. Wieman在实验室中实现BEC。仅几年后,通过2001年诺贝尔物理学奖,这一壮举的重要性才得到认可。反过来,这又启用了一个原始平台,可以研究和实验观察到波浪和相干结构的非线性动力学的许多令人兴奋的特征。重要的是,这些连贯的结构在许多其他物理领域也具有广泛的适用性,包括非线性光学器件,等离子体物理和水波。在原子物理学中,BEC也是对超导性和超流体等显着量子特征的研究至关重要的,并且以这种能力,它们一直是与2003年诺贝尔物理学奖和拓扑阶段和拓扑阶段奖和他们与2016年诺贝尔奖相关的涡流奖中引用的涡流及其晶格相关的实验发现的前提和中心。该项目的目的是在这种令人兴奋的原子理理论,物理实验,应用数学分析和科学计算的最前沿的这种令人兴奋的联系中推进最先进的方法,同时培训了新一代的科学家和数学家在这个科学界面和超越纪律界限。与过去的PI轨迹一致,在这项研究工作中将强调多样性,公平性和包容性群体的多样性和包容性。更具体地说,本项目的主要力量包括对标准BEC设置的非平凡扩展的研究。特别是,该提案的主轴考虑以下主题。 (1)两个组成互动的BEC,可以通过量子校正和著名的Lee-huang-yang(Lhy)贡献,以及时形成所谓的量子液滴。这种液滴的主要认识是,它们的出现步骤是从排斥的均值和有吸引力的超越球场贡献之间的相互作用的步骤。 (2)三个(F = 1)和五个(f = 2)自旋组件设置支持共生(深色 - 坦克和深色)固体波结构,具有前所未有的集成或弱不可构成的特性。 (3)一个和多组分/旋转设置中的3D涡流结结构。涡流结构建了有限的实验和理论分析的最弹性类型的涡流结构之一。 PI还将在旋转设置中探索复杂的非平凡拓扑模式,例如爱丽丝环和狄拉克单极。 (4)在拓扑上是非平凡的环形诱捕设置,其中系统与有效非线性的内在度量和曲率的相互作用可以产生前所未有的相干结构及其动力学。在这个主题中更广泛地,PI将研究限制在不同类型的弯曲表面上的固体和涡流等非线性波。这个雄心勃勃的计划应推动最先进的平均野外理解理解的界限,提供许多超越领域的见解,并阐明其有效性范围以及非线性与量子与量子的相互作用以及热力学效应的相互作用,以及这一奖项反映了NSF的法定任务,并通过评估了诚实的范围,这是由诚实的构成的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superfluid vortex multipoles and soliton stripes on a torus
  • DOI:
    10.1103/physreva.105.063325
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. D’Ambroise;R. Carretero-Gonz'alez;P. Schmelcher;P. Kevrekidis
  • 通讯作者:
    J. D’Ambroise;R. Carretero-Gonz'alez;P. Schmelcher;P. Kevrekidis
Solitary waves in a quantum droplet-bearing system
  • DOI:
    10.1103/physreva.107.063308
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    G. Katsimiga;S. Mistakidis;G. N. Koutsokostas;D. Frantzeskakis;R. Carretero-González;P. Kevrekidis
  • 通讯作者:
    G. Katsimiga;S. Mistakidis;G. N. Koutsokostas;D. Frantzeskakis;R. Carretero-González;P. Kevrekidis
Dragging a defect in a droplet Bose-Einstein condensate
  • DOI:
    10.1103/physreva.107.033310
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    S. Saqlain;T. Mithun;R. Carretero-Gonz'alez;P. Kevrekidis
  • 通讯作者:
    S. Saqlain;T. Mithun;R. Carretero-Gonz'alez;P. Kevrekidis
Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks
一维液滴、气泡和扭结的相互作用和动力学
  • DOI:
    10.3390/condmat8030067
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Katsimiga, Garyfallia C.;Mistakidis, Simeon I.;Malomed, Boris A.;Frantzeskakis, Dimitris J.;Carretero-Gonzalez, Ricardo;Kevrekidis, Panayotis G.
  • 通讯作者:
    Kevrekidis, Panayotis G.
Existence, stability, and dynamics of monopole and Alice ring solutions in antiferromagnetic spinor condensates
  • DOI:
    10.1103/physreva.105.053303
  • 发表时间:
    2022-05-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mithun, Thudiyangal;Carretero-Gonzalez, R.;Kevrekidis, P. G.
  • 通讯作者:
    Kevrekidis, P. G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Carretero其他文献

Ricardo Carretero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Carretero', 18)}}的其他基金

OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
  • 批准号:
    1603058
  • 财政年份:
    2016
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
  • 批准号:
    1309035
  • 财政年份:
    2013
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Modeling, Analysis, Computation and Experiments of Two-Component Bose-Einstein Condensates
二元玻色-爱因斯坦凝聚体的建模、分析、计算和实验
  • 批准号:
    0806762
  • 财政年份:
    2008
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Topological excitations in Bose-Einstein condensates: Existence, stability, dynamics, and interactions
玻色-爱因斯坦凝聚中的拓扑激发:存在性、稳定性、动力学和相互作用
  • 批准号:
    0505663
  • 财政年份:
    2005
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant

相似国自然基金

量子启发的复合语义视频实例检索技术研究
  • 批准号:
    62372339
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
层间耦合强化对转角双层过渡金属硫化物的量子物态调控研究
  • 批准号:
    12304540
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
  • 批准号:
    12304171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了