Kahler-Einstein Metrics on Fano Varieties
Fano 品种的卡勒-爱因斯坦度量
基本信息
- 批准号:2109144
- 负责人:
- 金额:$ 19.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric shapes can be either smooth or singular. Smooth ones have been studied effectively by the calculus, while singular geometric shapes are much more difficult to study in general although they appear with abundance in the world around us. One method to understand singular shapes is by measuring distances between their points. To do that, the best way is to use the so-called Einstein structures, which originate from general relativity. In this project, the investigator plans to study Einstein structures on a class of geometric shapes called algebraic varieties, which are central objects in many branches of mathematics. This study will allow us to measure distances and reveal certain mysterious structures of algebraic varieties. This project requires combinations of many techniques and will bring experts from different fields to interact. Its outcome will have potential applications in the development of several theories, including canonical metrics in differential geometry, stability theory in algebraic geometry, and string theory in mathematical physics.The investigator will study the Yau-Tian-Donaldson conjecture about the equivalence of K-stability and the existence of Kahler-Einstein metrics on singular Fano varieties. This requires new strategies to overcome difficulties due to the presence of singularities. The investigator has introduced a new process, the minimization of normalized volumes, for detecting local geometries of algebraic singularities. On the algebraic side, the investigator will continue his research on the K-stability of Fano varieties by studying minimization of normalized volumes and applying deep techniques of the minimal model program from algebraic geometry. This could lead to new criteria for the K-stability of singular varieties. On the analytic side, the investigator will apply various newly-developed techniques, including a variational approach via pluripotential theory, a priori estimates for singular complex Monge-Ampere equations, Cheeger-Colding-Tian's regularity theory from metric geometry, algebraic structures on Gromov-Hausdorff limits, and asymptotical analysis of singular metrics. The combination of these techniques will be effective in solving Kahler-Einstein equations on singular varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何形状可以光滑或单数。微积分对光滑的几何形状有效地研究了,而一般的几何形状在我们周围的世界中大量出现。一种理解奇异形状的方法是测量其点之间的距离。为此,最好的方法是使用所谓的爱因斯坦结构,该结构源自一般相对论。在这个项目中,研究者计划在一类称为代数品种的几何形状上研究爱因斯坦的结构,它们是数学许多分支中的中心对象。这项研究将使我们能够测量距离并揭示某些代数品种的神秘结构。该项目需要许多技术的组合,并将带来来自不同领域的专家进行交互。 Its outcome will have potential applications in the development of several theories, including canonical metrics in differential geometry, stability theory in algebraic geometry, and string theory in mathematical physics.The investigator will study the Yau-Tian-Donaldson conjecture about the equivalence of K-stability and the existence of Kahler-Einstein metrics on singular Fano varieties.这需要新的策略来克服由于存在奇异性而遇到困难。研究者引入了一个新的过程,即归一化体积的最小化,用于检测代数奇点的局部几何形状。在代数方面,研究人员将通过研究归一化体积的最小化并应用代数几何形状的最小模型程序的深度技术来继续他对FANO品种的K稳定性的研究。这可能会导致新品种K稳定性的新标准。 On the analytic side, the investigator will apply various newly-developed techniques, including a variational approach via pluripotential theory, a priori estimates for singular complex Monge-Ampere equations, Cheeger-Colding-Tian's regularity theory from metric geometry, algebraic structures on Gromov-Hausdorff limits, and asymptotical analysis of singular metrics.这些技术的组合将有效地解决Kahler-Einstein方程上的奇异品种。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi Li其他文献
Tailoring the CeO2 morphology and its electrochemical reactivity for highly sensitive and selective determination of dopamine and epinephrine
定制 CeO2 形态及其电化学反应性,用于高灵敏度和选择性测定多巴胺和肾上腺素
- DOI:
10.1007/s00604-019-4100-7 - 发表时间:
2020-01 - 期刊:
- 影响因子:5.7
- 作者:
Chi Li;Yuanyuan Zhang;Chunya Li;Qijin Wan;Qiang Ke;Nianjun Yang - 通讯作者:
Nianjun Yang
Assessing the Iterative Finite Difference Mass Balance and 4D‐Var Methods to Derive Ammonia Emissions Over North America Using Synthetic Observations
评估迭代有限差分质量平衡和 4D-Var 方法,利用综合观测推导出北美的氨排放量
- DOI:
10.1029/2018jd030183 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chi Li;R. Martin;M. Shephard;K. Cady;M. Cooper;J. Kaiser;Colin J. Lee;Lin Zhang;D. Henze - 通讯作者:
D. Henze
On the limit behavior of metrics in the continuity method for the Kähler–Einstein problem on a toric Fano manifold
- DOI:
10.1112/s0010437x12000334 - 发表时间:
2010-12 - 期刊:
- 影响因子:1.8
- 作者:
Chi Li - 通讯作者:
Chi Li
Face Recognition by Estimating Facial Distinctive Information Distribution
通过估计面部特征信息分布进行人脸识别
- DOI:
10.1007/978-3-642-12297-2_55 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Bangyou Da;N. Sang;Chi Li - 通讯作者:
Chi Li
span style=font-family:; roman,serif;font-size:12pt;= new= times=Broadband light out-coupling enhancement of flexible organic light-emitting diodes using biomimetic quasi-random nanostruc
使用仿生准随机纳米结构增强柔性有机发光二极管的宽带光输出耦合
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:9
- 作者:
Rong Wang;Lu-Hai Xu;Yan-Qing Li;Lei Zhou;Chi Li;Qing-Dong Ou;Jing-De Chen;Su Shen;Jian-Xin Tang - 通讯作者:
Jian-Xin Tang
Chi Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi Li', 18)}}的其他基金
Canonical metrics and stability in complex geometry
复杂几何中的规范度量和稳定性
- 批准号:
2305296 - 财政年份:2023
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Kahler-Einstein Metrics on Fano Varieties
Fano 品种的卡勒-爱因斯坦度量
- 批准号:
1810867 - 财政年份:2018
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Kahler-Einstein metrics on Fano manifolds
Fano 流形上的卡勒-爱因斯坦度量
- 批准号:
1636488 - 财政年份:2015
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Kahler-Einstein metrics on Fano manifolds
Fano 流形上的卡勒-爱因斯坦度量
- 批准号:
1405936 - 财政年份:2014
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
相似国自然基金
类“波”衰减条件下球对称爱因斯坦数量场方程相关问题研究
- 批准号:12301072
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
旋量玻色爱因斯坦凝聚体中skyrmion的激发机理与相互作用的研究
- 批准号:12375014
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
玻色-爱因斯坦凝聚体中轨道角动量叠加态的制备及探测
- 批准号:12304293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Einstein-Bianchi 方程及 Hilbert 复形中相关问题的非标准一阶系统最小二乘有限元方法研究
- 批准号:12371371
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
强相互作用物质中的玻色-爱因斯坦凝聚
- 批准号:12375136
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Kahler-Einstein Metrics on Fano Varieties
Fano 品种的卡勒-爱因斯坦度量
- 批准号:
1810867 - 财政年份:2018
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Existence problem of conformally Kahler Einstein-Maxwell metrics
共形卡勒爱因斯坦-麦克斯韦度量的存在性问题
- 批准号:
17K05218 - 财政年份:2017
- 资助金额:
$ 19.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kahler-Einstein metrics on Fano manifolds
Fano 流形上的卡勒-爱因斯坦度量
- 批准号:
1636488 - 财政年份:2015
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Singular Kahler-Einstein Metrics: Analytic and Algebraic Aspects
奇异卡勒-爱因斯坦度量:分析和代数方面
- 批准号:
1510214 - 财政年份:2015
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant
Kahler-Einstein metrics on Fano manifolds
Fano 流形上的卡勒-爱因斯坦度量
- 批准号:
1405936 - 财政年份:2014
- 资助金额:
$ 19.34万 - 项目类别:
Standard Grant