Collaborative Research: CDS&E: Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) to maximize the science return of next generation cosmological experiments
合作研究:CDS
基本信息
- 批准号:2108678
- 负责人:
- 金额:$ 29.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project leverages recent major advances in computational galaxy formation to produce the largest suite of cosmological simulations with full baryonic physics designed to train machine learning algorithms for a broad range of applications, including thousands of cosmological and feedback parameter variations. This project will use this unique dataset to study how to maximize the science return from next generation cosmological surveys. Although the surveys will constrain the value of the cosmological parameters with unprecedented accuracy, achieving this goal requires overcoming two major obstacles: (1) the optimal summary statistic is unknown, and (2) a lot of the information is on scales significantly affected by baryonic processes that are still poorly understood. CAMELS will (1) develop neural networks to help extract the most cosmological information, and (2) perform thousands of simulations over a wide range of parameters to quantify uncertainties in baryonic effects. All CAMELS data products will be publicly available, to enable research and engagement by the broader community. The team will work to increase the participation and success of women and underrepresented minorities by providing dedicated mentoring and early access to research, through three programs for undergraduate students: (1) a summer research program co-organized by the National Society of Black Physicists and the Simons Observatory; (2) the AstroCom NYC program, joining other mentors from the City University of New York, the American Museum of Natural History, and the Flatiron Institute; and (3) the new Colors of Astrophysics program at the University of Connecticut.Upcoming experiments such as DES, DESI, LSST, WFIRST, SKA, and Euclid will improve our understanding of fundamental physics and the origin and fate of the Universe. CAMELS will help to determine the optimal summary statistic to apply to the non-Gaussian density fields observed in most cosmological surveys, and to quantify uncertainties in subgrid models for key astrophysical processes such as feedback from stars and massive black holes, which limit the use of hydrodynamic simulations. The neural networks and thousands of simulations that will be used by CAMELS will produce a distinct qualitative improvement over previous work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
带有机器学习模拟的宇宙学和天体物理学 (CAMELS) 项目利用计算星系形成方面的最新重大进展,利用完整的重子物理产生最大的宇宙学模拟套件,旨在训练机器学习算法以适应广泛的应用,包括数千个宇宙学和天体物理学。反馈参数变化。 该项目将使用这个独特的数据集来研究如何最大限度地提高下一代宇宙学调查的科学回报。 尽管巡天将以前所未有的精度限制宇宙学参数的值,但实现这一目标需要克服两个主要障碍:(1)最佳汇总统计量未知,(2)大量信息的尺度受到重子的显着影响。的过程仍然知之甚少。 CAMELS 将 (1) 开发神经网络来帮助提取最多的宇宙学信息,以及 (2) 对各种参数进行数千次模拟,以量化重子效应的不确定性。 所有 CAMELS 数据产品都将公开,以便更广泛的社区进行研究和参与。 该团队将通过为本科生提供三个项目提供专门的指导和早期研究机会,努力提高女性和代表性不足的少数族裔的参与度和成功率:(1) 由国家黑人物理学家协会和西蒙斯天文台; (2) AstroCom NYC 项目,与来自纽约城市大学、美国自然历史博物馆和熨斗研究所的其他导师一起; (3) 康涅狄格大学新的天体物理学色彩项目。即将推出的 DES、DESI、LSST、WFIRST、SKA 和 Euclid 等实验将增进我们对基础物理学以及宇宙起源和命运的理解。 CAMELS 将有助于确定适用于大多数宇宙学调查中观测到的非高斯密度场的最佳汇总统计量,并量化关键天体物理过程的子网格模型中的不确定性,例如来自恒星和大质量黑洞的反馈,这些过程限制了流体动力学模拟。 CAMELS 将使用的神经网络和数千次模拟将比以前的工作产生明显的质量改进。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calibrating Cosmological Simulations with Implicit Likelihood Inference Using Galaxy Growth Observables
- DOI:10.3847/1538-4357/aca8fe
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Yongseok Jo;S. Genel;Benjamin Dan Wandelt;R. Somerville;F. Villaescusa-Navarro;G. Bryan;D. Anglés-Alcázar;D. Foreman-Mackey;D. Nelson;Ji-hoon Kim
- 通讯作者:Yongseok Jo;S. Genel;Benjamin Dan Wandelt;R. Somerville;F. Villaescusa-Navarro;G. Bryan;D. Anglés-Alcázar;D. Foreman-Mackey;D. Nelson;Ji-hoon Kim
The CAMELS Project: Public Data Release
- DOI:10.3847/1538-4365/acbf47
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:F. Villaescusa-Navarro;S. Genel;D. Angl'es-Alc'azar;L. A. Perez;Pablo Villanueva-Domingo;D. Wadekar;Helen Shao;F. G. Mohammad;Sultan Hassan;E. Moser;E. Lau;Luis Fernando Machado Poletti Valle;A. Nicola;L. Thiele;Yongseok Jo;O. Philcox;B. Oppenheimer;M. Tillman;C. Hahn;Neerav Kaushal;A. Pisani;M. Gebhardt;Ana Maria Delgado;J. Caliendo;C. Kreisch;Ka-wah Wong;W. Coulton;Michael Eickenberg;G. Parimbelli;Y. Ni;U. Steinwandel;V. L. Torre;R. Davé;N. Battaglia;D. Nagai;D. Spergel;L. Hernquist;B. Burkhart;D. Narayanan;Benjamin Dan Wandelt;R. Somerville;G. Bryan;M. Viel;Yin Li;V. Iršič;K. Kraljic;M. Vogelsberger
- 通讯作者:F. Villaescusa-Navarro;S. Genel;D. Angl'es-Alc'azar;L. A. Perez;Pablo Villanueva-Domingo;D. Wadekar;Helen Shao;F. G. Mohammad;Sultan Hassan;E. Moser;E. Lau;Luis Fernando Machado Poletti Valle;A. Nicola;L. Thiele;Yongseok Jo;O. Philcox;B. Oppenheimer;M. Tillman;C. Hahn;Neerav Kaushal;A. Pisani;M. Gebhardt;Ana Maria Delgado;J. Caliendo;C. Kreisch;Ka-wah Wong;W. Coulton;Michael Eickenberg;G. Parimbelli;Y. Ni;U. Steinwandel;V. L. Torre;R. Davé;N. Battaglia;D. Nagai;D. Spergel;L. Hernquist;B. Burkhart;D. Narayanan;Benjamin Dan Wandelt;R. Somerville;G. Bryan;M. Viel;Yin Li;V. Iršič;K. Kraljic;M. Vogelsberger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shy Genel其他文献
Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction
拉格朗日聚类和角动量重建的重子效应
- DOI:
10.3847/1538-4357/acae92 - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Ming-Jie Sheng;Hao-Ran Yu;Sijia Li;Shihong Liao;Min Du;Yunchong Wang;Peng Wang;Kun Xu;Shy Genel;Dimitrios Irodotou - 通讯作者:
Dimitrios Irodotou
Shy Genel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
- 批准号:
2244952 - 财政年份:2023
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
- 批准号:
2309102 - 财政年份:2023
- 资助金额:
$ 29.23万 - 项目类别:
Standard Grant