PlantSynBio: Optimized CAM Engineering for Improving Water-use Efficiency in Plants

PlantSynBio:优化 CAM 工程,提高植物用水效率

基本信息

项目摘要

Crassulacean acid metabolism and tissue succulence are metabolic and anatomical adaptations that improve water-use efficiency and drought (and salinity) stress tolerance in plants. These traits are among the most widespread and successful adaptations in the plant kingdom for mitigating drought stress, and thus, represent highly useful traits for the design of climate-resilient crops. The goal of this project is to test optimized synthetic versions of crassulacean acid metabolism alone and in combination with engineered tissue succulence. The proposed synthetic gene circuits developed by this project can be applied widely to other food, feed, fiber, and biofuel crops to improve their productivity, improve water-use efficiency, and drought/salinity stress tolerance under the hotter and drier environments of the future. The project will also provide training of an increasingly diverse scientific workforce through student recruitment efforts that target students from historically underrepresented groups in science, technology, engineering, and mathematics. In addition, the project will provide training and preparedness of future scientists in evidence-based, visually focused, scientific communication through unique training opportunities for undergraduate and graduate students, and postdoctoral scholars in plant biochemistry, synthetic biology, and biotechnology blended with infographics, interactive visualizations, and visual social media. The investigators will increase public awareness of the need for more climate-resilient crops through the production of two high-quality videos describing the project deliverables to showcase the societal benefit of these biotechnological innovations. Lastly, the training and outreach activities will be evaluated through robust assessment activities to appraise their impact on public science outreach.Future increases in drought severity and duration will significantly slow the rate of crop productivity increases needed to satisfy future projected crop demands and threaten global food security. Therefore, innovative synthetic biology approaches for curtailing photorespiration and improving water-use efficiency via the introduction of synthetic crassulacean acid metabolism into C3 photosynthesis crops are essential. The proposed research will generate optimized synthetic carboxylation, decarboxylation, starch degradation, and complete crassulacean acid metabolism gene circuits. The resulting plants will be evaluated for improved growth, productivity, water-use efficiency, and water-deficit and salinity tolerance. In addition, plants expressing optimized crassulacean acid metabolism gene circuits will be evaluated with and without engineered tissue succulence in Arabidopsis and soybean, a critically important C3 photosynthesis crop for the U.S.. Empirical testing will be accompanied by detailed, genome-scale transcriptomic and metabolome profiling and diel flux balance analysis modeling to corroborate energetic efficiency predictions for each iteration of the synthetic crassulacean acid metabolism gene circuits. The broader impacts of the project include improving national food, feed, fiber, and biofuel security by enhancing crop productivity, water-use efficiency, and drought/salinity tolerance in a changing environment. Outreach and training goals include ensuring the training of an increasingly diverse scientific workforce through recruitment of underrepresented students, providing training and preparedness of future scientists in scientific communication, increasing public awareness of the need to improve the climate-resiliency of crops using videos describing the concepts of synthetic CAM and engineered tissue succulence, and assessing training, outreach and engagement activities for didactic and societal impacts.This award was co-funded by the Plant Genome Research Program and the Physiological Mechanisms and Biomechanics Program in the Division of Integrative Organismal Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
景天类的酸代谢和组织肉质是代谢和解剖适应,可提高植物的水分利用效率和干旱(和盐度)胁迫耐受性。这些性状是植物界中最广泛、最成功的缓解干旱胁迫的适应措施之一,因此对于设计气候适应型作物来说是非常有用的性状。该项目的目标是单独测试景天酸代谢的优化合成版本以及与工程组织肉质的结合。该项目开发的合成基因电路可广泛应用于其他粮食、饲料、纤维和生物燃料作物,以提高其生产力,提高水利用效率,以及在未来更热和更干燥的环境下的干旱/盐胁迫耐受性。该项目还将通过招生工作,针对来自历史上在科学、技术、工程和数学领域代表性不足的群体的学生,为日益多元化的科学劳动力提供培训。此外,该项目还将通过为植物生物化学、合成生物学和生物技术领域的本科生和研究生以及博士后学者提供独特的培训机会,为未来的科学家提供基于证据、以视觉为中心的科学传播方面的培训和准备,并与信息图表、互动技术相结合。可视化和视觉社交媒体。研究人员将通过制作两个描述项目成果的高质量视频来提高公众对需要更具气候适应性的作物的认识,以展示这些生物技术创新的社会效益。最后,培训和推广活动将通过强有力的评估活动进行评估,以评估其对公共科学推广的影响。未来干旱严重程度和持续时间的增加将大大减缓满足未来预计作物需求所需的作物生产力增长速度,并威胁全球粮食安全。因此,通过将合成景天酸代谢引入 C3 光合作用作物来减少光呼吸和提高水分利用效率的创新合成生物学方法至关重要。拟议的研究将产生优化的合成羧化、脱羧、淀粉降解和完整的景天酸代谢基因回路。将对所得植物的生长、生产力、水分利用效率以及缺水和盐度耐受性进行评估。此外,将在拟南芥和大豆(对美国至关重要的 C3 光合作用作物)的情况下,对表达优化的景天酸代谢基因电路的植物进行评估,无论其是否具有工程组织肉质。经验测试将伴随着详细的基因组规模转录组和代谢组分析。昼夜通量平衡分析模型,以证实合成景天酸代谢基因回路每次迭代的能量效率预测。该项目的更广泛影响包括通过提高不断变化的环境中的作物生产力、用水效率和干旱/盐分耐受性来改善国家粮食、饲料、纤维和生物燃料安全。外展和培训目标包括通过招募代表性不足的学生来确保培训日益多样化的科学劳动力,为未来科学家提供科学传播方面的培训和准备,通过描述概念的视频提高公众对提高作物气候适应能力的必要性的认识合成 CAM 和工程组织肉质的研究,并评估培训、外展和参与活动的教学和社会影响。该奖项由植物基因组研究计划和生理机制和综合有机系统部门的生物力学计划。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cushman其他文献

Evolutionary blocks to anthocyanin accumulation and the loss of an anthocyanin carrier protein in betalain-pigmented Caryophyllales
甜菜红石竹目中花青素积累的进化阻碍和花青素载体蛋白的损失
  • DOI:
    10.1101/2022.10.19.512958
  • 发表时间:
    2022-10-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boas Pucker;Nathanael Walker;Won Yim;John Cushman;A. Crum;Ya Yang;Samuel F. Brockington
  • 通讯作者:
    Samuel F. Brockington
The EAR-motif of the Cys2/His2-type Zinc Finger Protein Zat7 Plays a Key Role in the Defense Response of Arabidopsis to Salinity Stress*
Cys2/His2 型锌指蛋白 Zat7 的 EAR 基序在拟南芥对盐度胁迫的防御反应中发挥关键作用*
  • DOI:
    10.1074/jbc.m611093200
  • 发表时间:
    2007-03-23
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Sultan Ciftci;M. Morsy;Luhua Song;Alicia Coutu;B. Krizek;M. Lewis;Daniel Warren;John Cushman
  • 通讯作者:
    John Cushman
MIT Open Access Articles The Microbial Opsin Family of Optogenetic Tools
麻省理工学院开放获取文章光遗传学工具的微生物视蛋白家族
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Zhang;J. Vierock;O. Yizhar;L. Fenno;Satoshi Tsunoda;A. Kianianmomeni;Matthias Prigge;Andre Berndt;John Cushman;Ju¨rgen Polle;Jon Magnuson;Peter Hegemann;Karl Deisseroth
  • 通讯作者:
    Karl Deisseroth
Enhanced Tolerance to Oxidative Stress in Transgenic Arabidopsis Plants Expressing Proteins of Unknown Function1[C][W][OA]
表达未知功能蛋白的转基因拟南芥植物对氧化应激的耐受性增强1[C][W][OA]
  • DOI:
    10.1104/pp.108.124875
  • 发表时间:
    2008-07-09
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Song Luhua;Sultan Ciftci;J. Harper;John Cushman;R. Mittler
  • 通讯作者:
    R. Mittler
Grain mineral nutrient profiling and iron bioavailability of an ancient crop tef (Eragrostis tef)
古老作物 tef(Eragrostis tef)的谷物矿物质营养分析和铁生物利用度
  • DOI:
    10.21475/ajcs.21.15.10.p3264
  • 发表时间:
    2021-10-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayalew Ligaba;Mitiku A. Mengistu;G. Beyene;John Cushman;R. Glahn;M. Piñeros
  • 通讯作者:
    M. Piñeros

John Cushman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Cushman', 18)}}的其他基金

Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243692
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport
通过随机重整化群算子进行数据驱动的多尺度模型识别和缩放用于地下传输
  • 批准号:
    1314828
  • 财政年份:
    2013
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
The Hydrology of Desiccation and Cracking with Application to Desertification
干裂水文及其在荒漠化中的应用
  • 批准号:
    0838224
  • 财政年份:
    2009
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Continuing Grant
Regulatory and Signaling Mechanisms of Crassulacean Acid Metabolism: A Photosynthetic Adaptation to Environmental Stress
景天酸代谢的调节和信号机制:对环境胁迫的光合适应
  • 批准号:
    0843730
  • 财政年份:
    2009
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
2008 Gordon Research Conference on SALT & WATER STRESS IN PLANTS, September 7-12, 2008 Big Sky, MT
2008年戈登SALT研究会议
  • 批准号:
    0817753
  • 财政年份:
    2008
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG——了解地下水文学中遗传信息的传递
  • 批准号:
    0620460
  • 财政年份:
    2006
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Mechanisms of the Evolutionary Origins of Crassulacean Acid Metabolism (CAM) in Tropical Orchids
热带兰花景天酸代谢(CAM)的进化起源机制
  • 批准号:
    0543659
  • 财政年份:
    2006
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG: Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG:了解地下水文学中遗传信息的传递
  • 批准号:
    0417555
  • 财政年份:
    2004
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
CMG Training: Summer School in Geophysical Porous Media: Multidisciplinary Science from Nanoscale (Clay) to Global (Magma) Migration
CMG 培训:地球物理多孔介质暑期学校:从纳米尺度(粘土)到全球(岩浆)迁移的多学科科学
  • 批准号:
    0417805
  • 财政年份:
    2004
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Coupling Stochastic and Chaotic-Dynamic Theories with 3d-pptv Experiments to Study Flow and Anomalous Dispersion in Porous Media
将随机和混沌动力学理论与 3d-pptv 实验耦合来研究多孔介质中的流动和反常色散
  • 批准号:
    0310029
  • 财政年份:
    2003
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向人机交互的磁流变柔顺执行器优化设计方法与磁滞补偿控制研究
  • 批准号:
    52305064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合三相电压型整流器多目优化设计与功率协调控制方法
  • 批准号:
    52377191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大规模黎曼流形稀疏优化算法及应用
  • 批准号:
    12371306
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于可变Petri网的RPA流程学习和优化方法研究
  • 批准号:
    62302306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
  • 批准号:
    10114180
  • 财政年份:
    2024
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Collaborative R&D
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Cooperative Agreement
Structure-based identification of optimized mutant Kir3.4 inhibitors for renoprotection (C07 (A03 + A04))
基于结构的肾脏保护优化突变型 Kir3.4 抑制剂的鉴定 (C07 (A03 A04))
  • 批准号:
    516847250
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Collaborative Research Centres
'Smart Ventilation' - Novel Real-Time Biosensors and Artificial Intelligence for Optimized Mechanical Ventilation in Human Lungs
“智能通气”——新型实时生物传感器和人工智能,用于优化人肺机械通气
  • 批准号:
    489877
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了