Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
基本信息
- 批准号:2107244
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent advances in Artificial Intelligence are transforming many aspects of human life such as e-commerce, medicine, transportation, and beyond. Datacenter networks are the foundation of modern online services. As the world is recovering from COVID-19, society is witnessing an increased reliance on online services and machine learning. This explosive growth has created an enormous demand for computation resources in datacenters. However, today's approaches are extremely costly and energy-inefficient. In fact, if the current systems continue to grow, datacenters will account for 14% of the total worldwide carbon emissions by 2040. This project aims to address this challenge using advanced resource-sharing techniques tailored for machine learning workloads. In particular, this award enables the network operators to maximize the utilization of network resources while achieving high quality of service experience for the users.This work sets out to explore the timely requirement of multi-tenancy for machine-learning acceleration through a new paradigm called dynamic architecture fission. There is a significant degree of underutilization when it comes to machine-learning accelerators that stem from the rigidity of architectures and their single-tenant nature. As such, there is an imminent need to rethink custom accelerator design and adoption in datacenters where cost-effective resource utilization replaces unnecessary resource cloning. Similar to the case of microprocessors, multi-tenant acceleration can open up a pathway that remedies resource replication and underutilization. Nonetheless, multi-tenancy has not been a primary factor in the design of machine-learning accelerators because of the race for higher speed, the recency of accelerator adoption in datacenters, and challenges associated with accelerator multi-tenancy. To that end, this project aims to explore spatial multi-tenancy as a new dimension in accelerator design to tackle resource underutilization in datacenters and bring forth cost-effective deployment of machine learning accelerators. This new dimension will significantly help reduce the slope of over-provisioning in datacenters to pave the way towards greener cloud computing. The proposed spatial multi-tenant acceleration of deep learning at scale can substantially improve the cost-effectiveness of next-generation datacenters. Given the increasing demand for deep-learning services and the carbon footprint of training and inference, this proposal will have a significant socioeconomic and environmental impact. The researchers are also strongly committed to broadening participation in computing and have comprehensive plans to engage the underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能的最新进展正在改变人类生活的许多方面,例如电子商务,医学,运输等。数据中心网络是现代在线服务的基础。随着世界从Covid-19恢复,社会正在见证对在线服务和机器学习的依赖。这种爆炸性的增长为数据中心中的计算资源带来了巨大的需求。但是,当今的方法非常昂贵且能源造成能力。实际上,如果当前系统继续增长,到2040年,数据中心将占全球碳排放量的14%。该项目旨在使用针对机器学习工作负载量身定制的高级资源共享技术来应对这一挑战。特别是,该奖项使网络运营商能够最大程度地利用网络资源,同时为用户实现高质量的服务体验。这项工作旨在通过一种称为动态架构的新范式来探索及时的机器学习加速度多租户的要求。当涉及机器学习的加速器时,源于建筑及其单租户的刚性,因此没有充分利用。因此,即将重新考虑在数据中心中重新思考自定义加速器的设计和采用,在该数据中心,成本效益的资源利用率取代了不必要的资源克隆。与微处理器类似,多租户加速度可以打开一种补救资源复制和未充分利用的途径。尽管如此,由于竞争更高的速度,数据中心中的加速器采用以及与加速器多租赁相关的挑战,多租期并不是机器学习加速器设计的主要因素。为此,该项目旨在探索空间多租赁作为加速器设计中的新维度,以解决数据中心中未充分利用的资源,并带来机器学习加速器的成本效益部署。这个新的维度将大大有助于减少数据中心中过度提供的斜率,从而为绿色云计算铺平道路。拟议的大规模深度学习的空间多租户加速可以大大提高下一代数据中心的成本效益。鉴于对深度学习服务的需求不断增长以及培训和推断的碳足迹,该提案将产生重大的社会经济和环境影响。研究人员还强烈致力于扩大计算的参与,并制定了参与代表性不足的组的全面计划。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准通过评估来获得支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GraphIt to CUDA Compiler in 2021 LOC: A Case for High-Performance DSL Implementation via Staging with BuilDSL
- DOI:10.1109/cgo53902.2022.9741280
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Ajay Brahmakshatriya;S. Amarasinghe
- 通讯作者:Ajay Brahmakshatriya;S. Amarasinghe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manya Ghobadi其他文献
Manya Ghobadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manya Ghobadi', 18)}}的其他基金
CAREER: Large-scale Dynamic Reconfigurable Networks
职业:大规模动态可重构网络
- 批准号:
2144766 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
- 批准号:
2211382 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023468 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Principled Framework for Workload Distribution Techniques in Large-Scale Networks
合作研究:CNS 核心:小型:大规模网络中工作负载分配技术的原则框架
- 批准号:
2008624 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant