Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective

合作研究:SHF:媒介:从机器学习的角度振兴 EDA

基本信息

  • 批准号:
    2106725
  • 负责人:
  • 金额:
    $ 79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Despite its spectacular success in the past, design automation of electronic circuits and systems remains limited in effectiveness and efficiency. This is often due to unnecessarily excessive iterations of point software tools, where early predictions on downstream design steps are overly pessimistic and interoperations among different tools largely require manual handling. As such, existing chip-design flows are not considered fully automated, and there still exists a strong need for jointly exploring the considerable room between the different steps in these flows. Moreover, existing design-verification approaches usually involve unwanted redundancy and substantial manual effort, contributing greatly to a well-known bottleneck of time-to-market. The recent progress in machine-learning technology offers a great opportunity to revitalize current Electronic Design Automation (EDA) flows from an alternative perspective, i.e., extracting design and verification knowledge from existing design data, and reusing it on new designs. The goal of this research is to develop such knowledge extraction and reuse techniques with the aid of the state-of-the-art machine learning technology. The outcome of this research is to help mitigate the chip-design productivity crisis and cater to the increasing demand for hardware-accelerated computing. This research is also training students, including women and under-represented minorities, with interdisciplinary skills and preparing tomorrow’s high-tech workforce in the U.S. for solving challenges in the electronic industry.The project involves systematic research on machine learning in the context of electronic design automation with five integrated components: 1) development of learning-based fast and high fidelity prediction techniques for knowledge extraction in the structural and behavioral domains of circuit designs; 2) a study on how to seamlessly integrate the design predictions with circuit optimizations; 3) applying machine-learning prediction to accelerating functional-verification coverage and facilitating automated debugging; 4) developing autonomous learning on the interplay amongst tools and thereby achieving automated synthesis space exploration; 5) automated machine-learning architecture search and feature refinement in EDA applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管过去取得了惊人的成功,但电子电路和系统的设计自动化在有效性和效率方面仍然有限。这通常是由于对点软件工具的不必要的过多迭代,因此,下游设计步骤的早期预测过于悲观,并且在不同工具之间的互操作很大程度上需要手动处理。因此,现有的芯片设计流不被认为是完全自动化的,并且仍然有很大的需求,可以共同探索这些流中不同步骤之间的相当大的空间。此外,现有的设计验证方法通常涉及不必要的冗余和实质性的手动努力,这对众所周知的上市时间瓶颈做出了巨大的贡献。机器学习技术的最新进展为振兴当前电子设计自动化(EDA)流动提供了一个很好的机会,即从现有设计数据中提取设计和验证知识,并将其重复使用新设计。这项研究的目的是借助最先进的机器学习技术来开发这种知识提取和重用技术。这项研究的结果是帮助减轻芯片设计的生产力危机,并满足对硬件加速计算的需求不断增长的需求。 This research is also training students, including women and under-represented minorities, with interdisciplinary skills and preparing tomorrow’s high-tech workforce in the U.S. for solving challenges in the electronic industry.The project involves systematic research on machine learning in the context of electronic design automation with five integrated components: 1) development of learning-based fast and high fidelity prediction techniques for knowledge extraction in the structural and behavioral domains of circuit designs; 2)关于如何无缝将设计预测与电路优化整合的研究; 3)应用机器学习预测以加速功能验证覆盖范围并支持自动调试; 4)在工具之间的相互作用上开发自主学习,从而实现自动合成空间探索; 5)在EDA应用程序中自动化的机器学习体系结构搜索和功能改进。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准,被视为通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine-Learning Based Delay Prediction for FPGA Technology Mapping
A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions
处理基于深度学习的设计规则违规预测中的非确定性的随机方法
FlowTuner: A Multi-Stage EDA Flow Tuner Exploiting Parameter Knowledge Transfer
FlowTuner:利用参数知识传输的多级 EDA 流调谐器
APOLLO: An Automated Power Modeling Framework for Runtime Power Introspection in High-Volume Commercial Microprocessors
  • DOI:
    10.1145/3466752.3480064
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyao Xie;Xiaoqing Xu;Matt Walker;Joshua Knebel;K. Palaniswamy;Nicolas Hebert;Jiang Hu;Huanrui Yang;Yiran Chen;Shidhartha Das
  • 通讯作者:
    Zhiyao Xie;Xiaoqing Xu;Matt Walker;Joshua Knebel;K. Palaniswamy;Nicolas Hebert;Jiang Hu;Huanrui Yang;Yiran Chen;Shidhartha Das
Towards collaborative intelligence: routability estimation based on decentralized private data
  • DOI:
    10.1145/3489517.3530578
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingyu Pan;Chen-Chia Chang;Zhiyao Xie;Ang Li;Minxue Tang;Tunhou Zhang;Jiangkun Hu;Yiran Chen
  • 通讯作者:
    Jingyu Pan;Chen-Chia Chang;Zhiyao Xie;Ang Li;Minxue Tang;Tunhou Zhang;Jiangkun Hu;Yiran Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang Hu其他文献

Nonlinear finite-element-based structural system failure probability analysis methodology for gravity dams considering correlated failure modes
考虑相关失效模式的重力坝非线性有限元结构系统失效概率分析方法
Central Limit Theorem for Mutual Information of Large MIMO Systems With Elliptically Correlated Channels
具有椭圆相关信道的大型MIMO系统互信息的中心极限定理
Dynamic Approximation of JPEG Hardware
JPEG 硬件的动态逼近
Role of brachytherapy in post-operative cervical cancer patients with risk factors other than positive stump.
近距离放射治疗在具有阳性残端以外危险因素的宫颈癌术后患者中的作用。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Xiao;Jiang Hu;Xinling Cai;Jianjiang Fang;Jin Yang;Maohui Luo;S. Bai
  • 通讯作者:
    S. Bai
Multi-scale numerical simulation analysis for influence of combined leaching and frost deteriorations on mechanical properties of concrete
淋溶与霜冻联合劣化对混凝土力学性能影响的多尺度数值模拟分析

Jiang Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang Hu', 18)}}的其他基金

Travel: Workshop on Shared Infrastructure for Machine Learning Electronic Design Automation
旅行:机器学习电子设计自动化共享基础设施研讨会
  • 批准号:
    2310319
  • 财政年份:
    2023
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
  • 批准号:
    2212346
  • 财政年份:
    2022
  • 资助金额:
    $ 79万
  • 项目类别:
    Continuing Grant
RTML: Small: Real-Time Model-Based Bayesian Reinforcement Learning
RTML:小型:基于实时模型的贝叶斯强化学习
  • 批准号:
    1937396
  • 财政年份:
    2019
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
STARSS: Small: Collaborative: Physical Design for Secure Split Manufacturing of ICs
STARSS:小型:协作:IC 安全分割制造的物理设计
  • 批准号:
    1618824
  • 财政年份:
    2016
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Variation-Resilient VLSI Systems with Cross-Layer Controlled Approximation
SHF:小型:协作研究:具有跨层控制逼近的抗变化 VLSI 系统
  • 批准号:
    1525749
  • 财政年份:
    2015
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Design Automation for Cost-Effective Implementation of Adaptive Integrated Circuits
用于经济高效地实现自适应集成电路的设计自动化
  • 批准号:
    1255193
  • 财政年份:
    2013
  • 资助金额:
    $ 79万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了