Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning

协作研究:SHF:媒介:协作机器学习的异构架构

基本信息

  • 批准号:
    2106610
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The recent breakthrough of on-device machine learning with specialized artificial-intelligence hardware brings machine intelligence closer to individual devices. To leverage the power of the crowd, collaborative machine learning makes it possible to build up machine-learning models based on datasets that are distributed across multiple devices while preventing data leakage. However, most existing efforts are focused on homogeneous devices; given the widespread yet heterogeneous participants in practice, it is urgently important but challenging to manage immense heterogeneity. The research team develops heterogeneous architectures for collaborative machine learning to achieve three objectives under heterogeneity: efficiency, adaptivity, and privacy. The proposed heterogeneous architecture for collaborative machine learning is bringing tangible benefits for a wide range of disciplines that employ artificial intelligence technologies, such as healthcare, precision medicine, cyber physical systems, and education. The research findings of this project are intended to be integrated with the existing courses and K-12 programs. Furthermore, the research team is actively engaged in activities that encourage students from underrepresented groups to participate in computer science and engineering research.This project provides the theoretical underpinning and empirical evidence for an efficient, adaptive and privacy-preserving design under heterogeneity, which fills a critical void - the existing collaborative machine-learning approach fails to manage the immense heterogeneity in practice. This project centers on three aspects: (1) design of specialized neural architectures for heterogeneous hardware platforms to cope with the limited efficiency of collaborative training due to heterogeneity; (2) design of an efficient and adaptive knowledge-transfer framework to bridge heterogeneous participants based on their underlying proximity benefits; (3) privacy strategies for heterogeneous collaboration by identifying new vulnerabilities and developing privacy-preserving mechanisms. A general-purpose testbed is built to rigorously validate the proposed research and expand the impact of this project. It is expected that this project opens a new research paradigm to unleash the utmost potential of heterogeneous and collaborative machine intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近使用专门的人工智能硬件的机上机器学习的突破使机器智能更接近单个设备。为了利用人群的力量,协作机器学习使建立基于在多个设备上分布的数据集的同时防止数据泄漏的数据集建立机器学习模型。但是,大多数现有的努力都集中在均匀的设备上。鉴于实践中的广泛但异质的参与者,管理巨大的异质性迫切但又具有挑战性。研究团队开发了用于协作机器学习的异质体系结构,以在异质性下实现三个目标:效率,适应性和隐私。拟议的用于协作机器学习的异质体系结构为采用人工智能技术(例如医疗保健,精密医学,网络物理系统和教育)的广泛学科带来了切实的好处。该项目的研究结果旨在与现有课程和K-12计划集成。 Furthermore, the research team is actively engaged in activities that encourage students from underrepresented groups to participate in computer science and engineering research.This project provides the theoretical underpinning and empirical evidence for an efficient, adaptive and privacy-preserving design under heterogeneity, which fills a critical void - the existing collaborative machine-learning approach fails to manage the immense heterogeneity in practice.该项目以三个方面为基础:(1)设计用于异质性硬件平台的专门神经体系结构,以应对由于异质性而导致的协作培训效率有限; (2)设计有效和自适应的知识转移框架,以基于其基本接近益处桥接异质参与者; (3)通过识别新漏洞和开发隐私机制的方式来实现异质协作的隐私策略。构建了通用测试床,以严格验证拟议的研究并扩大该项目的影响。预计该项目可以打开一个新的研究范式,以释放异质和协作机器智能的最大潜力。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coarse-Grained Floorplanning for streaming CNN applications on Multi-Die FPGAs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christophe Bobda其他文献

Application of ASP for Automatic Synthesis of Flexible Multiprocessor Systems from Parallel Programs
ASP在并行程序自动综合灵活多处理器系统中的应用
  • DOI:
    10.1007/978-3-642-04238-6_64
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harold Ishebabi;Philipp Mahr;Christophe Bobda;Martin Gebser;Torsten Schaub
  • 通讯作者:
    Torsten Schaub
On-chip transactional memory system for FPGAs using TCC model
使用 TCC 模型的 FPGA 片上事务存储系统
  • DOI:
    10.1145/1667520.1667525
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philipp Mahr;Alexander Heine;Christophe Bobda
  • 通讯作者:
    Christophe Bobda
Heuristics for Flexible CMP Synthesis
灵活 CMP 合成的启发式方法
  • DOI:
    10.1109/tc.2010.77
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Harold Ishebabi;Christophe Bobda
  • 通讯作者:
    Christophe Bobda

Christophe Bobda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christophe Bobda', 18)}}的其他基金

Travel: NSF Student Travel Grant for The 32nd IEEE International Symposium On Field-Programmable Custom Computing Machines (FCCM 2024)
旅行:第 32 届 IEEE 国际现场可编程定制计算机研讨会 (FCCM 2024) 的 NSF 学生旅行补助金
  • 批准号:
    2411045
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2020 IEEE International Symposium On Field-Programmable Custom Computing Machines (FCCM 2020)
NSF 学生旅费资助 2020 年 IEEE 国际现场可编程定制计算机研讨会 (FCCM 2020)
  • 批准号:
    2016161
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CNS Core: Small: A Hardware/Software Infrastructure for Secured Multi-Tenancy in FPGA-Accelerated Cloud and Datacenters
CNS 核心:小型:用于 FPGA 加速云和数据中心中安全多租户的硬件/软件基础设施
  • 批准号:
    2007320
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Decentralized Edge Computing Platform for Privacy-Preserving Mobile Crowdsensing
合作研究:SHF:小型:用于保护隐私的移动群体感知的去中心化边缘计算平台
  • 批准号:
    2007210
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CSR: Small: Reconfigurable In-Sensor Architectures for High Speed and Low Power In-situ Image Analysis
CSR:小型:可重构传感器内架构,用于高速、低功耗原位图像分析
  • 批准号:
    1946088
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CSR: Small: Reconfigurable In-Sensor Architectures for High Speed and Low Power In-situ Image Analysis
CSR:小型:可重构传感器内架构,用于高速、低功耗原位图像分析
  • 批准号:
    1618606
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: GOALI: Distributed Embedded Vision System for Multi-Unmanned Ground Vehicle Coordination in Indoor Environments
EAGER:GOALI:用于室内环境中多无人地面车辆协调的分布式嵌入式视觉系统
  • 批准号:
    1547934
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
US-Cameroon Planing Research Visit on Combined Binary Code Translation and Synthesis for Heterogeneous Multiprocessor Systems, January 2014
美国-喀麦隆计划对异构多处理器系统的组合二进制代码翻译和合成进行研究访问,2014 年 1 月
  • 批准号:
    1346542
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Self-Coordination in Cooperative Smart Camera Networks Incorporating System-On-Chip Reconfiguration
CSR:媒介:协作研究:结合片上系统重新配置的协作智能相机网络中的自协调
  • 批准号:
    1302596
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了