The Effects of Driving Force, Morphology and Anion Separation on Carrier Mobility in Doped Conjugated Polymers

驱动力、形态和阴离子分离对掺杂共轭聚合物中载流子迁移率的影响

基本信息

  • 批准号:
    2105896
  • 负责人:
  • 金额:
    $ 60.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Semiconductors are the basis for modern electronics such as computers, flat screen displays, and mobile phones. Most semiconductors are inorganic, hard materials such as silicon, and are expensive to process and manufacture. This project explores the properties of plastic semiconductors that are lightweight, flexible and potentially inexpensive to process. The electrical properties of inorganic semiconductors are controlled through doping. Doping is the intentional introduction of impurities into a semiconductor for the purpose of changing its electrical or optical properties. A key challenge facing the development of plastic semiconductors is they are not as easy to dope as inorganic semiconductors. This collaborative project takes advantage of new materials and processing methods to controllably dope plastic semiconductors. New materials have tunable properties that will allow for a greater degree of control over electrical conductivity. New processing methods allow dopant molecules to be precisely added to the plastic semiconductors at desired locations. High-quality doped polymer films will be studied by a suite of techniques to fully understand them. They will also be incorporated into thermoelectric devices that convert waste heat into electricity, a new source of renewable energy. Undergraduate and graduate students will be trained in areas of national need through this project. Outreach efforts will introduce high school students in the Los Angeles area to related topics such as renewable energy through demonstrations and experiments. This project is jointly funded by the Electronic and Photonic Materials program of the Division of Materials Research and the Chemical Structure, Dynamics, and Mechanisms B program of the Division of Chemistry. Conjugated polymers have numerous potential uses because they combine the mechanical properties of plastics with the electrical properties of semiconductors. When doped by strong oxidizing agents, their conductivity can be tuned by orders of magnitude, but interactions with the dopant counterion and dopant-induced changes in morphology can limit the doped carrier mobility. This project takes advantage of sequential processing, in which the polymer film is cast first and the dopant is infiltrated in a second step from a solvent chosen to appropriately swell but not dissolve the underlying polymer film. This method provides a degree of control over the doped polymer morphology that enables large-area applications, such as thermoelectric devices. The project also explores novel dopants, including newly-synthesized dodecaborane clusters with tunable redox potentials. These clusters have chemical structures that serve to shield the counterion charge from the polarons on the polymer backbone, allowing for control over the counterion-polaron interaction, and thus providing for improved carrier mobility and Seebeck coefficient. The project also investigates counterion exchange, where after reaction, the dopant counterion can be substituted for an inert ion by mass action, providing yet another degree of control over the properties of doped conjugated polymers. In all cases, the physical structure of the doped polymer film, as determined by a combination of grazing incidence wide angle X-ray scattering and neutron reflectometry, is correlated with the optical and electrical properties to understand how the location of the counterion in the film controls physical properties. Finally, the project uses ultrafast spectroscopy to measure both the thermal conductivity (via time-domain thermal reflectance) and electrical properties (via pump/probe transient absorption experiments) of doped conjugated polymer films. The key aim of the project is to determine detailed structure/function relationships to maximally exploit the use of doped conjugated polymers in thermoelectric and other devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体是计算机、平板显示器和移动电话等现代电子产品的基础。大多数半导体是无机硬质材料,例如硅,加工和制造成本昂贵。该项目探索了塑料半导体的轻质、灵活且加工成本低廉的特性。无机半导体的电性能通过掺杂来控制。掺杂是有意将杂质引入半导体中,以改变其电学或光学性质。塑料半导体发展面临的一个关键挑战是它们不像无机半导体那样容易掺杂。该合作项目利用新材料和加工方法来可控掺杂塑料半导体。新材料具有可调节的特性,可以更大程度地控制电导率。新的加工方法可以将掺杂剂分子精确地添加到塑料半导体的所需位置。高质量掺杂聚合物薄膜将通过一系列技术进行研究,以充分了解它们。它们还将被纳入热电设备中,将废热转化为电能,这是一种新的可再生能源。通过该项目,本科生和研究生将接受国家需要领域的培训。外展工作将通过演示和实验向洛杉矶地区的高中生介绍可再生能源等相关主题。该项目由材料研究部电子与光子材料项目和化学部化学结构、动力学与机理B项目联合资助。共轭聚合物具有许多潜在用途,因为它们结合了塑料的机械性能和半导体的电性能。当用强氧化剂掺杂时,它们的电导率可以调整几个数量级,但与掺杂剂抗衡离子的相互作用以及掺杂剂引起的形态变化会限制掺杂载流子的迁移率。该项目利用了顺序加工的优势,其中首先浇铸聚合物薄膜,然后在第二步中从选择的溶剂中渗透掺杂剂,以适当溶胀但不溶解下面的聚合物薄膜。该方法提供了对掺杂聚合物形态的一定程度的控制,从而实现了大面积应用,例如热电器件。该项目还探索新型掺杂剂,包括新合成的具有可调氧化还原电位的十二硼烷簇。这些簇具有用于屏蔽反离子电荷与聚合物主链上的极化子的化学结构,从而允许控制反离子-极化子相互作用,从而提供改进的载流子迁移率和塞贝克系数。该项目还研究了抗衡离子交换,反应后,掺杂剂抗衡离子可以通过质量作用取代惰性离子,从而对掺杂共轭聚合物的性能提供另一种程度的控制。在所有情况下,掺杂聚合物薄膜的物理结构(通过掠入射广角 X 射线散射和中子反射计的组合确定)与光学和电学特性相关,以了解反离子在薄膜中的位置控制物理特性。最后,该项目使用超快光谱来测量掺杂共轭聚合物薄膜的热导率(通过时域热反射率)和电性能(通过泵/探针瞬态吸收实验)。该项目的主要目标是确定详细的结构/功能关系,以最大程度地利用掺杂共轭聚合物在热电和其他器件中的应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和评估进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning counterion chemistry to reduce carrier localization in doped semiconducting carbon nanotube networks
  • DOI:
    10.1016/j.xcrp.2023.101407
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Tucker L. Murrey;Taylor J. Aubry;O. Ruiz;Kira A. Thurman;K. Eckstein;Evan A. Doud;Julia M. Stauber;A. Spokoyny;B. J. Schwartz;T. Hertel;J. Blackburn;Andrew J. Ferguson
  • 通讯作者:
    Tucker L. Murrey;Taylor J. Aubry;O. Ruiz;Kira A. Thurman;K. Eckstein;Evan A. Doud;Julia M. Stauber;A. Spokoyny;B. J. Schwartz;T. Hertel;J. Blackburn;Andrew J. Ferguson
Counterion Control and the Spectral Signatures of Polarons, Coupled Polarons, and Bipolarons in Doped P3HT Films
  • DOI:
    10.1002/adfm.202213652
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Eric C Wu;Charlene Z. Salamat;O. Ruiz;Thomas Qu;Alexis Kim;S. Tolbert;B. J. Schwartz
  • 通讯作者:
    Eric C Wu;Charlene Z. Salamat;O. Ruiz;Thomas Qu;Alexis Kim;S. Tolbert;B. J. Schwartz
Molecular Dynamics Study of the Thermodynamics of Integer Charge Transfer vs Charge-Transfer Complex Formation in Doped Conjugated Polymers
掺杂共轭聚合物中整数电荷转移与电荷转移络合物形成的热力学的分子动力学研究
  • DOI:
    10.1021/acsami.2c06449
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Wu, Eric Chih-Kuan;Salamat, Charlene Z.;Tolbert, Sarah H.;Schwartz, Benjamin J.
  • 通讯作者:
    Schwartz, Benjamin J.
Vibrational Stark Effect Mapping of Polaron Delocalization in Chemically Doped Conjugated Polymers
化学掺杂共轭聚合物中极化子离域的振动斯塔克效应图
  • DOI:
    10.1021/acs.chemmater.1c02934
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Stanfield, Dane A.;Mehmedović, Zerina;Schwartz, Benjamin J.
  • 通讯作者:
    Schwartz, Benjamin J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Schwartz其他文献

Service binding and parameter specification via the DNS (DNS SVCB and HTTPSSVC)
通过 DNS(DNS SVCB 和 HTTPSSVC)进行服务绑定和参数规范
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Nygren;M. Bishop;Benjamin Schwartz
  • 通讯作者:
    Benjamin Schwartz
Kinetics study of the substitution reaction of fac-[FeII(CN)2(CO)3I]− with PPh3
fac-[FeII(CN)2(CO)3I]−与PPh3取代反应的动力学研究
  • DOI:
    10.1016/j.ica.2011.01.069
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Benjamin Schwartz;Ofir Azran;Jonathan Solaimanzadeh;Joshua Fluss;Wenfeng Lo;Jian
  • 通讯作者:
    Jian
Two new phreatic snails (Mollusca, Caenogastropoda, Cochliopidae) from the Edwards and Edwards-Trinity aquifers, Texas
来自德克萨斯州爱德华兹和爱德华兹-三一含水层的两种新潜水蜗牛(软体动物、Caenogastropoda、Cochliopidae)
  • DOI:
    10.3897/subtbiol.47.113186
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Kathryn E. Perez;Yamileth Guerrero;Roel Castañeda;Peter H. Diaz;R. Gibson;Benjamin Schwartz;Benjamin T. Hutchins
  • 通讯作者:
    Benjamin T. Hutchins
Appropriate use of antibiotics for URIs in children: Part I. Otitis media and acute sinusitis. The Pediatric URI Consensus Team.
儿童 URI 中适当使用抗生素:第一部分:中耳炎和急性鼻窦炎。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Scott F. Dowell;Benjamin Schwartz;William R. Phillips
  • 通讯作者:
    William R. Phillips
Towards End-to-End Deep Learning for Autonomous Racing: On Data Collection and a Unified Architecture for Steering and Throttle Prediction
走向自主赛车的端到端深度学习:关于转向和油门预测的数据收集和统一架构
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Wadekar;Benjamin Schwartz;S. S. Kannan;M. Mar;Rohan Kumar Manna;Vishnu Chellapandi;Daniel J. Gonzalez;A. E. Gamal
  • 通讯作者:
    A. E. Gamal

Benjamin Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Schwartz', 18)}}的其他基金

The Behavior of Solvated Electrons in the Presence of Electrolytes: Using Simulation and Experiment to Determine the Hydrated Electron's Structure from Competitive Ion Pairing
电解质存在下溶剂化电子的行为:利用模拟和实验从竞争性离子对确定水合电子的结构
  • 批准号:
    2247583
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Quantum Simulation Methods
使用超快光谱和量子模拟方法了解溶剂化电子的结构和动力学
  • 批准号:
    1856050
  • 财政年份:
    2019
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant
Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用超快光谱和混合量子/经典分子动力学模拟了解溶剂化电子的结构和动力学
  • 批准号:
    1565434
  • 财政年份:
    2016
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
UNS: Taking Advantage of Metal Interpenetration to Improve the Performance of Conjugated Polymer/Fullerene-Based Photovoltaics
UNS:利用金属互穿来提高共轭聚合物/富勒烯基光伏器件的性能
  • 批准号:
    1510353
  • 财政年份:
    2015
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
Understanding the Effects of Liquid Structure on Chemical Bonds and Solvated Electrons Using Ultrafast Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用超快光谱和混合量子/经典分子动力学模拟了解液体结构对化学键和溶剂化电子的影响
  • 批准号:
    1212951
  • 财政年份:
    2013
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
Dissertation Research: Ecosystem scale abiotic and biotic drivers of food web structure in deep phreatic aquifers
论文研究:深层潜水层食物网结构的生态系统规模非生物和生物驱动因素
  • 批准号:
    1210270
  • 财政年份:
    2012
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
Chemical Bond Breaking and the Role of Cavities in Solution Studied Using Femtosecond Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用飞秒光谱和混合量子/经典分子动力学模拟研究化学键断裂和溶液中空腔的作用
  • 批准号:
    0908548
  • 财政年份:
    2009
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant
Understanding Charge Transfer and Chemical Bond Breaking in Solution Using Femtosecond Spectroscopy and Full CI Mixed Quantum/Classical Molecular Dynamics Simulations
使用飞秒光谱和完整 CI 混合量子/经典分子动力学模拟了解溶液中的电荷转移和化学键断裂
  • 批准号:
    0603766
  • 财政年份:
    2006
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant
CRC: Using Self-Organization to Control Morphology in Semiconducting Polymers
CRC:利用自组织控制半导体聚合物的形态
  • 批准号:
    0527015
  • 财政年份:
    2005
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant
Controlling the Morphology and Electronic Properties of Conjugated Polymer/Metal Interfaces
控制共轭聚合物/金属界面的形态和电子特性
  • 批准号:
    0305254
  • 财政年份:
    2003
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于脑电信号多域特征和深度学习的驾驶行为识别研究
  • 批准号:
    62366028
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
面向自动驾驶的恶劣天气条件下的多传感融合感知方法研究
  • 批准号:
    62376017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向多自动驾驶系统交互的测试与安全性分析方法
  • 批准号:
    62302035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
远程驾驶船舶航行风险辨识、评价与决策方法研究
  • 批准号:
    52301419
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向智能驾驶的虚实融合网络架构及资源优化方法研究
  • 批准号:
    62371444
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 60.5万
  • 项目类别:
Long-Term Quality of Life in the Ocular Hypertension Treatment Study Cohort
高眼压治疗研究队列的长期生活质量
  • 批准号:
    10667711
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
Synthesis of Biologically Active Terpenoids
生物活性萜类化合物的合成
  • 批准号:
    10587602
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
Chloride channel-dependent mechanisms of opiate and HIV-induced synaptodendritic injury
阿片类药物和 HIV 诱导的突触树突损伤的氯离子通道依赖性机制
  • 批准号:
    10704734
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
A National Neighborhood Data Resource to Understand Inequities in the Health and Socioeconomic Impacts of COVID-19 in the United States
用于了解美国 COVID-19 健康和社会经济影响中的不平等现象的全国邻里数据资源
  • 批准号:
    10609939
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了