Collaborative Research: Engineering, imaging and control of three-dimensional topological magnetic materials

合作研究:三维拓扑磁性材料的工程、成像和控制

基本信息

  • 批准号:
    2105400
  • 负责人:
  • 金额:
    $ 48.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYWhereas the vast majority of the world’s digital information is processed using nanoscale devices to manipulate the charge of electrons, most of this information is stored using the spins of electrons in the form of nanoscale magnetic domains. Recent advancements in magnetic materials and nano-characterization techniques have revealed nanoscale magnetic knots formed by the spins of many electrons. Topology is a property to describe the different types of magnetic knots, and could enable new types of electronic devices for sensing, processing, and storing information. This Collaborative Research project develops abilities to produce, manipulate, and characterize these knotted magnetic features. The project engages a wide age range of students on meaningful research, including training middle-school-aged summer camp students to use an electron microscope to search for nanoscale “magnetic bow ties”. The project promotes active exchange of students, faculty and researchers between institutions, and both undergraduate and graduate student researchers are educated in a broad range of materials challenges and nanoscale measurement techniques using novel and sophisticated equipment. A key component of the proposal is to foster collaborations between leading international and industrial scientists to provide international research experience for graduate students. This will not only strengthen the scientific excellence and broaden the impact of the research, but it will also provide important educational and post-graduate career opportunities for both graduate and undergraduate students. TECHNICAL SUMMARYNew functionality in nanomagnetic devices requires control of magnetic order at the nanometer spatial scale. Many spin-based devices are still in their infancy and a thorough understanding of the underlying materials and electronic properties and their effect on device performance will be essential for future applications. This Collaborative Research proposal builds on a strong existing collaboration between the PIs Fullerton and McMorran, international and industrial partners, and Harvey Mudd College to achieve a fundamental understanding of and ability to control the topological spin order in nano-structured magnetic materials and devices. The research is particularly interested in the design, manipulation and imaging of thin-film materials that exhibit complex 3-D topological states and defects such as chiral hybrid domain walls, chiral helixes, skyrmions, bi-skyrmions, antiskyrmions and hopfions. The morphology of the domains and defects depends sensitively on the underlying materials properties as well as on the application of magnetic fields, field history, and temperature where domains can arrange in metastable configurations including various topological defects. The team will develop and apply several recent methods in advanced electron microscopy to characterize the structure of these topological states, as well as their behavior under the influence of ultrafast fields. Summer curriculum is developed for the 7-12th grade and undergraduate levels to educate students on the use of nanoscale tools, and engage them in meaningful supervised research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结使用纳米级设备来处理电子电荷来处理世界的绝大多数数字信息,大多数信息都是使用纳米级磁域的形式的电子旋转来存储的。磁性材料和纳米特征技术的最新进展揭示了许多电子旋转形成的纳米级磁结。拓扑是描述不同类型的磁结的属性,可以使新型的电子设备用于灵敏度,处理和存储信息。这种协作研究项目的发展能力,可以生成,操纵和表征这些打结的磁性特征。该项目参与了有意义的研究的广泛年龄范围,包括培训中学时代的夏令营学生,使用电子显微镜搜索纳米级“磁性弓形领带”。该项目促进了机构之间的学生,教职员工和研究人员的积极交流,并使用新颖和复杂的设备对各种材料挑战进行了广泛的材料挑战和纳米级测量技术的教育。该提案的关键组成部分是促进领先的国际和工业科学家之间的合作,以为研究生提供国际研究经验。这不仅可以增强科学卓越的发展并扩大研究的影响,而且还将为研究生和本科生提供重要的教育和研究生职业机会。纳米磁性设备中的技术摘要New功能需要在纳米空间尺度上控制磁顺序。许多基于自旋的设备仍处于起步阶段,并且对基本材料和电子特性的透彻了解及其对设备性能的影响对于将来的应用至关重要。这项合作研究建议是建立在PIS Fullerton和McMorran,International和International和Industrial Partners以及Harvey Mudd College之间的强烈现有合作的基础上,目的是对控制纳米结构磁性材料和设备的拓扑旋转顺序的基本理解和能力。这项研究对薄膜材料的设计,操纵和成像特别感兴趣,这些材料暴露了复杂的3-D拓扑状态和缺陷,例如手性杂交结构域壁,手性螺旋螺旋,天际,天际,双层,双 - 千里米,动孔和希望。域和缺陷的形态敏感地取决于基础材料的特性以及磁场,田间历史和温度的应用,在该材料,田间历史和温度下,域可以在包括各种拓扑缺陷的亚稳态配置中排列。该团队将在高级电子显微镜中开发并应用几种最新方法,以表征这些拓扑状态的结构,以及它们在超快场的影响下的行为。夏季课程是为7至12年级和本科级别开发的,以教育学生使用纳米级工具,并参与有意义的监督研究。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估来评估的珍贵支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chiral spin textures in Fe/Gd based multilayer thin films
  • DOI:
    10.1017/s1431927621008618
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Will Parker;S. Montoya;E. Fullerton;B. McMorran
  • 通讯作者:
    Will Parker;S. Montoya;E. Fullerton;B. McMorran
Electron Microscopy Spin Analysis of Topological Magnetic Domains in Amorphous Fe/Gd Thin Films
非晶 Fe/Gd 薄膜拓扑磁畴的电子显微镜自旋分析
  • DOI:
    10.1017/s1431927622006717
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Moraski, Rich;Gilbert, Ian;Montoya, Sergio A;Fullerton, Eric E;McMorran, Benjamin J
  • 通讯作者:
    McMorran, Benjamin J
Discretized evolution of solitons in the achiral stripe phase of a Fe/Gd thin film
  • DOI:
    10.1103/physrevb.105.094423
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. Singh;M. Sanyal;J. Lee;J. Chess;R. Streubel;S. Montoya;M. Mukhopadhyay;B. McMorran;E. Fullerton;P. Fischer;S. Kevan;S. Roy
  • 通讯作者:
    A. Singh;M. Sanyal;J. Lee;J. Chess;R. Streubel;S. Montoya;M. Mukhopadhyay;B. McMorran;E. Fullerton;P. Fischer;S. Kevan;S. Roy
Evolution of Novel Chiral Spin Textures in Fe/Gd Based Multilayer Thin Films
Fe/Gd 基多层薄膜中新型手性自旋织构的演变
  • DOI:
    10.1017/s1431927622008960
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Parker, William S;Montoya, Sergio A;Fullerton, Eric E;McMorran, Benjamin M
  • 通讯作者:
    McMorran, Benjamin M
3D Morphology of Magnetic Bubbles in Layered Ferromagnetic Materials
层状铁磁材料中磁泡的 3D 形态
  • DOI:
    10.1017/s143192762100115x
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Moraski, Rich;McMorran, Benjamin
  • 通讯作者:
    McMorran, Benjamin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin McMorran其他文献

Benjamin McMorran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin McMorran', 18)}}的其他基金

Structured Electron Interferometry
结构电子干涉测量
  • 批准号:
    2309314
  • 财政年份:
    2023
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Direct Detection Electron Camera for an Existing Scanning Transmission Electron Microscope for Low-Dose and Phase-Sensitive Imaging of Materials
MRI:为现有扫描透射电子显微镜购买直接检测电子相机,用于材料的低剂量和相敏成像
  • 批准号:
    2216710
  • 财政年份:
    2022
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
Investigating Quantum Coherence using Structured Electron Interferometry
使用结构电子干涉测量法研究量子相干性
  • 批准号:
    2012191
  • 财政年份:
    2020
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
Quantum Superpositions of Free Electron Orbital Angular Momentum
自由电子轨道角动量的量子叠加
  • 批准号:
    1607733
  • 财政年份:
    2016
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
Structure-Enhanced Photoluminescence and Lasing in Aggregated Silver Films Coupled to Optically Amplifying Media
与光放大介质耦合的聚集银膜中的结构增强光致发光和激光发射
  • 批准号:
    1404676
  • 财政年份:
    2014
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于协作工程的AI赋能人机团队协作中的信任研究
  • 批准号:
    72271236
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
企业跨国混合式虚拟团队协作中的个人信任提升研究:基于协作工程方法
  • 批准号:
    71571045
  • 批准年份:
    2015
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
面向钻井工程实时监测的协作式MIMO无线传感器网络应用研究
  • 批准号:
    51174084
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
互联网环境下国际团队中的个人信任发展规律实证研究:基于建导式协作背景
  • 批准号:
    71101029
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
  • 批准号:
    2426065
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了