GOALI: Stochastic Optimization Framework for Energy-Smart Re/Manufacturing Systems

GOALI:能源智能再造/制造系统的随机优化框架

基本信息

项目摘要

This Grant Opportunities for Academic Liaison with Industry (GOALI) award will contribute to the national welfare by developing models to support the efficient integration of manufacturing and remanufacturing production lines. Remanufacturing is important to sustainable production by extending product life and reducing the environmental impact of manufacturing. Uncertain customer demand, along with highly variable product returns in both quantity and quality, have proved challenging to manufacturers in planning to allocate production capacity between new and returned products. The project, a collaboration between University of Louisville, Northeastern University, and IBM Corporation, will consider production scheduling and inventory levels, energy impact, uncertainty in demand, returns quantity, and returns quality to produce a production plan that is scalabile to industry-scale problems. The researched modeling approach is expected to inform the way such hybrid systems are designed, operated, and sustained, and will promote awareness of manufacturing-related e-waste considerations. The project will benefit US manufacturing by enabling the development of best practices for production-inventory management and recommendations for energy consumption and minimization of the energy footprint.This research will develop a novel three-stage stochastic optimization model that integrates tactical (production and energy) and operational (inventory) decisions under a single integrated framework. The third-stage operational decisions reflect three levels of uncertainty (demand, returns quantity, and returns quality). The second-stage, NP hard server-to-bank allocation problems (in the second stage) is addressed through a dual bin-packing model approach. The overall solution approach employs a scenario-based decomposition framework. A high-fidelity simulation model for the overall system will allow benchmarking of real-world strategies against solutions generated by the new approach. The industrial partner will pilot an implementation of the most promising policy from the benchmarking exercise, which will enable translation of the findings and fine-tuning of the approach. The project contributes to the training of next generation engineers via computational tools (e.g., optimization, virtual reality and simulation) and case studies to complement in-class instruction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该授予学术与工业联络机会(GOALI)奖将通过开发模型来支持制造和再制造生产线的高效整合,为国家福利做出贡献。 再制造通过延长产品寿命和减少制造对环境的影响对于可持续生产非常重要。 客户需求的不确定性,以及产品退货数量和质量的巨大差异,已证明对制造商在规划新产品和退货产品之间分配产能时具有挑战性。 该项目由路易斯维尔大学、东北大学和 IBM 公司合作,将考虑生产调度和库存水平、能源影响、需求不确定性、退货数量和退货质量,以制定可扩展到行业规模的生产计划问题。研究的建模方法预计将为此类混合系统的设计、操作和维持方式提供信息,并将提高人们对与制造相关的电子废物考虑因素的认识。该项目将通过开发生产库存管理的最佳实践以及能源消耗和能源足迹最小化的建议,使美国制造业受益。这项研究将开发一种新颖的三阶段随机优化模型,该模型集成了战术(生产和能源)和单一综合框架下的运营(库存)决策。第三阶段的运营决策反映了三个层面的不确定性(需求、退货数量和退货质量)。第二阶段,NP 硬服务器到银行分配问题(在第二阶段)通过双装箱模型方法解决。整体解决方案采用基于场景的分解框架。整个系统的高保真仿真模型将允许根据新方法生成的解决方案对现实世界的策略进行基准测试。行业合作伙伴将试点实施基准测试中最有前途的政策,这将有助于转化研究结果并微调方法。该项目通过计算工具(例如优化、虚拟现实和模拟)和案例研究来补充课堂教学,有助于培训下一代工程师。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Faisal Aqlan其他文献

Applying Product Manufacturing Techniques to Teach Data Analytics in Industrial Engineering: A Project Based Learning Experience
应用产品制造技术教授工业工程中的数据分析:基于项目的学习体验
Cereal sprout‐based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective
谷物芽菜食品:工业应用、新颖提取、消费者接受度、抗氧化潜力、感官评价和健康视角
  • DOI:
    10.1002/fsn3.3830
  • 发表时间:
    2023-11-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zahra Maqbool;Waseem Khalid;Mahum;Anosha Khan;Maliha Azmat;Aqeela Sehrish;Sania Zia;Hyrije Koraqi;A. Al;Faisal Aqlan;Khalid Ali Khan
  • 通讯作者:
    Khalid Ali Khan
PERFORMANCE ANALYSIS OF AN AUTOMATED PRODUCTION SYSTEM WITH QUEUE LENGTH DEPENDENT SERVICE RATES
具有依赖于队列长度的服务率的自动化生产系统的性能分析
A Modelling Technique for Enterprise Agility
企业敏捷性建模技术
  • DOI:
    10.24251/hicss.2018.584
  • 发表时间:
    2018-01-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua C. Nwokeji;Faisal Aqlan;T. Clark;B. Barn;V. Kulkarni
  • 通讯作者:
    V. Kulkarni
Behavioral Modeling of Collaborative Problem Solving in Multiplayer Virtual Reality Manufacturing Simulation Games
多人虚拟现实制造仿真游戏中协作解决问题的行为建模

Faisal Aqlan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Faisal Aqlan', 18)}}的其他基金

Collaborative Research: An Extended Reality Factory Innovation for Adaptive Problem-solving and Personalized Learning in Manufacturing Engineering
协作研究:制造工程中自适应问题解决和个性化学习的扩展现实工厂创新
  • 批准号:
    2302833
  • 财政年份:
    2023
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
REU Site in Advanced Manufacturing and Supply Chain
REU 先进制造和供应链基地
  • 批准号:
    2244119
  • 财政年份:
    2023
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
Integrating Undergraduate Learning in Engineering and Business to Improve Manufacturing Education
将工程和商业本科学习相结合以改善制造教育
  • 批准号:
    2211066
  • 财政年份:
    2022
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
  • 批准号:
    2204719
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
  • 批准号:
    2055384
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
  • 批准号:
    2204601
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
  • 批准号:
    2204601
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Replication of a Community-Engaged Educational Ecosystem Model in Rust Belt Cities
合作研究:在铁锈地带城市复制社区参与的教育生态系统模式
  • 批准号:
    2152282
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Continuing Grant
RET Site in Manufacturing Simulation and Automation
制造仿真和自动化中的 RET 站点
  • 批准号:
    2204719
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
Research Initiation: Advanced Modeling of Metacognitive Problem Solving and Group Effectiveness in Collaborative Engineering Teams
研究启动:协作工程团队中元认知问题解决和团队有效性的高级建模
  • 批准号:
    2208680
  • 财政年份:
    2021
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant

相似国自然基金

多目标随机优化在源荷不确定新能源热电耦合微电网中的典型问题研究
  • 批准号:
    62376239
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
平均场随机多目标优化中Pareto合作差分博弈问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多目标优化与贝叶斯更新的滑坡智能动态随机反演理论与方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
随机优化专题讲习班
  • 批准号:
    12026429
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
随机多目标优化问题的近似算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
  • 批准号:
    2306023
  • 财政年份:
    2023
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229344
  • 财政年份:
    2023
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: Parameter-Free Stochastic Optimization via Trajectory Cues
NSF-BSF:AF:小:通过轨迹线索进行无参数随机优化
  • 批准号:
    2239527
  • 财政年份:
    2023
  • 资助金额:
    $ 47.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了