Giant Polymer Brushes: How Fluid-Like Hyaluronan Brushes Minimize Biofilm Adhesion
巨型聚合物刷:流体状透明质酸刷如何最大限度地减少生物膜粘附
基本信息
- 批准号:2105290
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractIt is surprising how much can be accomplished by changing the properties of a surface. When made hydrophobic, a surface repels water and can, for example, protect paper or wood from moisture intrusion and damage. When made reactive to a specific gas or biomolecule, it can become an ultra-sensitive detector, for example a biosensor for coronavirus particles. One very successful way to control surface properties, so as to create designer materials like those described above, is to anchor polymers to the surface at such a high density that they align and stretch away from the surface because of crowding by their neighbors. This configuration is known as a polymer brush. Polymer brushes have been used in a stunning variety of practical applications. This grant has a twofold scientific purpose. The first purpose is to leverage nature’s molecular machines to produce polymer brushes by growing molecules directly from the surface. Amazingly, this new technology enables the production of polymer brush layers nearly one hundred times thicker than the those achievable with conventional techniques. This presents exciting new properties for the strategic design of materials. The second purpose is to address an important problem that plagues mankind: the formation of biofilms – that is communities of recalcitrant bacteria entrenched and protected in a mucous-like goo of their own making. Polymer brushes are a popular strategy to delay biofilm attachment but ultimately, they still fail. Motivated by promising preliminary results, the project explores in this grant whether the giant molecular-machine generated brush and its corresponding fluid-like interface can lead to a surface that the bacteria are unable to tether to – a new strategy only recently introduced in other contexts. To ensure that any bacteria which still manage to adhere are quickly eliminated, the researchers will embed antimicrobials within the large volume of the brush. Together, these measures will result in the maturation of an exciting new polymer brush technology addressing the age-old problem of bacterial infection and contamination of man-made materials. In outreach and education, the Curtis lab will publish a series of short playful cartoon videos about the science, biomaterials, and applications of this interdisciplinary project. The videos will be shared on a You Tube channel and disseminated widely. Topics will include anti-microbial materials, biofilms, polymer brushes, and molecular machines for making polymers. Technical AbstractPolymer brushes are an important tool for engineering interfaces in a variety of applications such as drug delivery, implants, catalysis, and anti-microbial materials. This grant will focus on pinpointing the origin and extent of the anti-fouling properties of a non-traditional, ultra-thick polymer brush recently established in the Curtis lab. Fabricated by surfaces coated with hyaluronan synthase, the enzyme-derived brushes are the thickest ever created by almost two orders of magnitude. Preliminary results demonstrate that these hyaluronan brushes repel bacteria and prevent biofilm adhesion for up to a week, performing an order of magnitude better than hyaluronan films, which are recognized as having superior anti-fouling properties. The Curtis lab will test the hypothesis that the superior performance of theses brushes arises from their fluid-like interface, similar to other recent very successful materials introduced for anti-biofilm applications. In addition, they will optimize the anti-fouling performance of the brushes with systematic studies of its dependence on brush grafting density and molecular weight. Lastly, to maximize the anti-biofilm properties of the brush, they will immobilize biocides throughout the material to create a multi-functional biointerface with optimal anti-microbial performance. More broadly, this research will contribute to the continued development of a new class of polymer brush, which is expected to find broader applications in materials science. In outreach and education, the Curtis lab will publish a series of short playful cartoon videos about the science, biomaterials, and applications of this project. The videos will be shared on a You Tube channel and disseminated widely. Topics will include anti-fouling materials, biofilms, polymer brushes, etc. Additionally, Dr. Curtis will continue her efforts to increase diversity in STEM by using the period of this grant to establish contacts and build lasting relationships with faculty, advisors, and students at historically Black colleges and universities. These activities have the primary goals of (1) building effective relationships to help improve recruitment and retention of minority students and (2) learning through conversations how to enhance the climate at Georgia Tech to make it more welcoming and supportive for students of color.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要令人惊讶的是,当表面具有疏水性时,可以实现如此多的效果,例如,当表面与特定气体发生反应时,可以保护纸张或木材免受湿气侵入和损坏。或生物分子,它可以成为一种超灵敏探测器,例如冠状病毒颗粒的生物传感器,一种控制表面特性的非常成功的方法,以创建如上所述的设计材料,是将聚合物锚定在表面上。它们排列的密度很高这种结构被称为聚合物刷,它已被用于各种令人惊叹的实际应用中,第一个目的是利用大自然的力量。令人惊奇的是,这项新技术能够生产比传统技术厚近一百倍的聚合物刷层,这为材料的战略设计提供了令人兴奋的新特性。第二个目的是解决困扰人类的一个重要问题:生物膜的形成,即顽固的细菌群落在它们自己制造的粘液状粘液中根深蒂固和保护,聚合物刷是延迟生物膜附着的流行策略,但最终仍然失败。受有希望的初步结果的推动,该项目在这笔资助中探索了巨型分子机器生成的刷子及其相应的流体状界面是否可以导致细菌无法束缚的表面——这是最近在为了确保快速消除任何仍然粘附的细菌,研究人员将在刷子的大体积中嵌入抗菌剂,这些措施将导致令人兴奋的新型聚合物刷技术的成熟,以解决年龄问题。在宣传和教育方面,柯蒂斯实验室将发布一系列关于这一跨学科项目的科学、生物材料和应用的有趣的卡通视频。 You Tube 频道和广泛传播的主题包括抗菌材料、生物膜、聚合物刷和用于制造聚合物的分子机器。 技术摘要聚合物刷是药物输送、植入、催化和抗微生物等多种应用中工程界面的重要工具。 - 微生物材料。这笔资助将重点查明柯蒂斯实验室最近制造的非传统超厚聚合物刷的防污性能的起源和程度。表面涂有透明质酸合酶,酶衍生的刷子是迄今为止最厚的刷子,其厚度几乎增加了两个数量级。初步结果表明,这些透明质酸刷子可以在长达一周的时间内排斥细菌并防止生物膜粘附,其性能比透明质酸好一个数量级。柯蒂斯实验室将测试这些刷子的卓越性能源于其流体状界面的假设,类似于其他最近的刷子。此外,他们还将通过系统研究刷子接枝密度和分子量的依赖性来优化刷子的防污性能,最终最大限度地提高刷子的抗生物膜性能。更广泛地说,这项研究将有助于新型聚合物刷的持续开发,预计将在材料中找到更广泛的应用。科学.In为了推广和教育,柯蒂斯实验室将发布一系列有关该项目的科学、生物材料和应用的有趣卡通视频,这些视频将在 YouTube 频道上分享并广泛传播,主题将包括防污材料、此外,柯蒂斯博士将继续努力通过利用这笔资助的时间与历史悠久的黑人学院和大学的教师、顾问和学生建立联系并建立持久的关系,以增加 STEM 的多样性。有初级的目标是 (1) 建立有效的关系,以帮助改善少数族裔学生的招收和保留;(2) 通过对话学习如何改善佐治亚理工学院的氛围,使其更加欢迎和支持有色人种学生。该奖项反映了 NSF 的法定使命通过使用基金会的智力价值和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Curtis其他文献
Using technology to enhance the implementation of peer discussion in science education
利用技术加强同伴讨论在科学教育中的实施
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jennifer Curtis - 通讯作者:
Jennifer Curtis
Quality Varies Across Health Insurance Marketplace Pricing Regions
不同健康保险市场定价区域的质量各不相同
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3
- 作者:
C. MacLean;Eric Marnoch;Zhao Sun;Jennifer Curtis;J. Burmeister;E. Anum;M. Belman;S. Nussbaum - 通讯作者:
S. Nussbaum
Nurse-Led Telephonic Palliative Care
护士主导的电话姑息治疗
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.8
- 作者:
R. Yamarik;A. Tan;A. Brody;Jennifer Curtis;Laraine Chiu;Jean;C. Grudzen - 通讯作者:
C. Grudzen
Rehabilitation of handwriting skills in stroke patients using interactive games: a pilot study
使用互动游戏康复中风患者的书写技能:一项试点研究
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jennifer Curtis;Loes S Ruijs;M. Vries;R. Winters;J. Martens - 通讯作者:
J. Martens
Jennifer Curtis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Curtis', 18)}}的其他基金
REU Site: Broadening Participation and Resiliency in Physics
REU 网站:扩大物理学领域的参与度和弹性
- 批准号:
2244423 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Broadening Participation in Physics - A multi-institutional REU program
REU 网站:扩大物理学领域的参与 - 多机构 REU 计划
- 批准号:
1852519 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collective Dynamics and Collaborative Killing: Synergistic Elimination of Bacteria by Immune Cells and Viruses
集体动力与协同杀伤:免疫细胞和病毒协同消除细菌
- 批准号:
1806606 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Active Hyaluronan Polymer Brushes for Tunable Biointerfaces
用于可调生物界面的活性透明质酸聚合物刷
- 批准号:
1709897 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Broadening participation in undergraduate research in physics: A multi-institutional REU program
REU 网站:扩大物理学本科生研究的参与:多机构 REU 计划
- 批准号:
1560165 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
2012 Chemical Engineering Summer School: Equipping Faculty to Teach the Next Generation
2012 年化学工程暑期学校:装备教师来教导下一代
- 批准号:
1159915 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Hyaluronan-Protein Networks in Solution and in the Polymer Coat of Cells
职业:溶液中和细胞聚合物涂层中的透明质酸-蛋白质网络
- 批准号:
0955811 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Development and Validation of Particle-Phase Stress Constitutive Models for Non-Spherical Particles
非球形颗粒的颗粒相应力本构模型的开发和验证
- 批准号:
0854005 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
The Phagosensor Technique: Quantifying the force fields generated during phagocytosis using deformable microcapsules
Phagosensor 技术:使用可变形微胶囊量化吞噬过程中产生的力场
- 批准号:
0848797 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Democracy, Development, and Post-Conflict Politics
民主、发展和冲突后政治
- 批准号:
ES/E009808/1 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Fellowship
相似国自然基金
高效稳定的多孔配位聚合物膜的研制及电合成过氧化氢
- 批准号:22375223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CuAl/有机聚合物复合涂层构筑及其转移润滑膜调控研究
- 批准号:52305205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
粉煤灰基发泡地质聚合物矿化封存CO2机制研究
- 批准号:52304196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冠醚聚合物电解质中结构化Li+通道的可控构建及其解耦传导特性
- 批准号:52303245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过渡金属配合物-聚合物复合体系提升协同催化效率
- 批准号:22371063
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of Nano-hybrid Polymer Brushes by Umpolung of Conducting Polymers and their Electrocatalytic Applications
导电聚合物纳米杂化聚合物刷的开发及其电催化应用
- 批准号:
23K13557 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and low-friction surface provided by high-density inorganic polymer brushes
高密度无机聚合物刷提供坚固且低摩擦的表面
- 批准号:
23K17718 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Tubular Supramolecular Polymer Brushes Delivery Vectors
管状超分子聚合物刷递送载体
- 批准号:
EP/X025896/1 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Novel 3D cell culture systems using cellulose nanofibers with concentrated polymer brushes
使用纤维素纳米纤维和浓缩聚合物刷的新型 3D 细胞培养系统
- 批准号:
22H02133 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Role of Polymer Sequence on Penetrant Transport in Charged Brushes
合作研究:聚合物序列对带电刷中渗透剂传输的作用
- 批准号:
2113767 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant