FMRG: Adaptable and Scalable Robot Teleoperation for Human-in-the-Loop Assembly
FMRG:用于人在环装配的适应性和可扩展的机器人远程操作
基本信息
- 批准号:2037101
- 负责人:
- 金额:$ 374.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The COVID-19 pandemic has accelerated the adoption of remote working in many industries. The ability for employees to work remotely, often from home, has become crucial to an organization's long-term resilience and growth potential. However, while advances in software and networking have made it possible for information workers to work remotely, most manufacturing workers cannot, because the infrastructure that is needed doesn't exist. This Future Manufacturing (FM) project will research an adaptable and scalable robot teleoperation system that allows factory workers to work remotely. The research will benefit both the manufacturing industry and the workforce by increasing access to manufacturing employment and improving working conditions and safety. By combining human-in-the-loop design with machine learning, this research can broaden the adoption of automation in manufacturing to new tasks. Beyond manufacturing, the research will also lower the entry barrier to using robotic systems for a wide range of real-world applications, such as assistive and service robots. The research team is collaborating with NYDesigns and LaGuardia Community College to translate research results to industrial partners and develop training programs to educate and prepare the future manufacturing workforce.This research suggests three key ideas to enable human-in-the-loop assembly: First, the system uses a physical scene understanding algorithm that converts the real-world robot workspace into a virtual manipulable three-dimensional scene representation. Next, a three-dimensional Virtual Reality user interface will be used to allow users to specify high-level task goals using this scene representation. Finally, the system uses a goal-driven reinforcement learning algorithm to infer an effective planning policy, given the task goals and the robot configuration. This system can overcome several limitations of existing teleoperation systems. By separating high-level task planning from low-level robot control using a physical scene representation, the system allows the operator to specify task goals without having expert knowledge of the robot hardware and configuration. By using reinforcement learning for low-level control, the system is more generalizable to new tasks and hardware.This award is co-funded by the Divisions of Civil Mechanical and Manufacturing Innovation, Electrical, Communications and Cyber Systems, Computer and Network Systems, Undergraduate Education, and Behavioral and Cognitive Sciences and the Cyber Physical Systems, NSF Scholarships in Science, Technology, Engineering, and Mathematics, and Advanced Technological Education Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19 大流行加速了许多行业远程工作的采用。员工通常在家远程工作的能力对于组织的长期弹性和增长潜力至关重要。然而,虽然软件和网络的进步使信息工作者可以远程工作,但大多数制造业工人却不能,因为所需的基础设施不存在。这个未来制造(FM)项目将研究一种适应性强且可扩展的机器人远程操作系统,该系统允许工厂工人远程工作。该研究将增加制造业就业机会并改善工作条件和安全,使制造业和劳动力受益。通过将人机交互设计与机器学习相结合,这项研究可以将制造领域自动化的应用范围扩大到新的任务。除了制造业之外,该研究还将降低将机器人系统用于各种现实世界应用(例如辅助机器人和服务机器人)的准入门槛。研究团队正在与 NYDesigns 和拉瓜迪亚社区学院合作,将研究成果转化为工业合作伙伴,并制定培训计划来教育和准备未来的制造业劳动力。这项研究提出了实现人机循环装配的三个关键想法:首先,该系统使用物理场景理解算法,将现实世界的机器人工作空间转换为虚拟可操作的三维场景表示。接下来,将使用三维虚拟现实用户界面来允许用户使用此场景表示来指定高级任务目标。最后,系统使用目标驱动的强化学习算法,在给定任务目标和机器人配置的情况下推断出有效的规划策略。该系统可以克服现有远程操作系统的一些限制。通过使用物理场景表示将高级任务规划与低级机器人控制分开,该系统允许操作员指定任务目标,而无需具备机器人硬件和配置的专业知识。通过使用强化学习进行低级控制,该系统更适用于新任务和硬件。该奖项由土木机械和制造创新、电气、通信和网络系统、计算机和网络系统、本科生等部门共同资助教育、行为和认知科学以及网络物理系统、NSF 科学、技术、工程和数学奖学金以及先进技术教育项目。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
AdaGrasp:学习自适应抓取器感知抓取策略
- DOI:10.1109/icra48506.2021.9560833
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xu, Zhenjia;Qi, Beichun;Agrawal, Shubham;Song, Shuran
- 通讯作者:Song, Shuran
Precueing Object Placement and Orientation for Manual Tasks in Augmented Reality
在增强现实中预先确定手动任务的对象放置和方向
- DOI:10.1109/tvcg.2022.3203111
- 发表时间:2022-11
- 期刊:
- 影响因子:5.2
- 作者:Liu, Jen;Tversky, Barbara;Feiner, Steven
- 通讯作者:Feiner, Steven
Rearrangement Planning for General Part Assembly
总装重排规划
- DOI:
- 发表时间:2023-07-01
- 期刊:
- 影响因子:0
- 作者:Yulong Li;Andy Zeng;Shuran Song
- 通讯作者:Shuran Song
Multi-Level Precues for Guiding Tasks Within and Between Workspaces in Spatial Augmented Reality
用于在空间增强现实中工作空间内和工作空间之间指导任务的多级提示
- DOI:10.1109/tvcg.2023.3320246
- 发表时间:2023-11
- 期刊:
- 影响因子:5.2
- 作者:Volmer, Benjamin;Liu, Jen;Matthews, Brandon;Bornkessel;Feiner, Steven;Thomas, Bruce H.
- 通讯作者:Thomas, Bruce H.
Adaptive Visual Cues for Guiding a Bimanual Unordered Task in Virtual Reality
用于指导虚拟现实中双手无序任务的自适应视觉提示
- DOI:10.1109/ismar55827.2022.00059
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Liu, Jen;Wang, Portia;Tversky, Barbara;Feiner, Steven
- 通讯作者:Feiner, Steven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Feiner其他文献
Asynchronously Assigning, Monitoring, and Managing Assembly Goals in Virtual Reality for High-Level Robot Teleoperation
在虚拟现实中异步分配、监控和管理装配目标以实现高级机器人远程操作
- DOI:
10.1109/vr58804.2024.00066 - 发表时间:
2024-03-16 - 期刊:
- 影响因子:0
- 作者:
Shutaro Aoyama;Jen;Portia Wang;Shreeya Jain;Xuezhen Wang;Jingxi Xu;Shuran Song;Barbara Tversky;Steven Feiner - 通讯作者:
Steven Feiner
Augmented Reality and Virtual Reality for Ice-Sheet Data Analysis
用于冰盖数据分析的增强现实和虚拟现实
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Boghosian;S. Cordero;Carmine Elvezio;Sofia Sanchez;Ben Yang;Shengyue Guo;Qazi Ashikin;Joel Salzman;Kirsty Tinto;Steven Feiner;Robin Bell - 通讯作者:
Robin Bell
PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain-Computer Interfaces and Extended Reality Experiments
PhysioLabXR:用于实时、多模式、脑机接口和扩展现实实验的 Python 平台
- DOI:
10.21105/joss.05854 - 发表时间:
2024-01-11 - 期刊:
- 影响因子:0
- 作者:
Ziheng ‘Leo’ Li;Haowen ‘John’ Wei;Ziwen Xie;Yunxiang Peng;June Pyo Suh;Steven Feiner;Paul Sajda - 通讯作者:
Paul Sajda
Interaction and presentation techniques for situated visualization
情景可视化的交互和演示技术
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Steven Feiner;Sean White - 通讯作者:
Sean White
Visuo-Haptic VR and AR Guidance for Dental Nerve Block Education
用于牙科神经阻滞教育的 Visuo-Haptic VR 和 AR 指导
- DOI:
10.1109/tvcg.2024.3372125 - 发表时间:
2024-03-18 - 期刊:
- 影响因子:5.2
- 作者:
Sara Samuel;Carmine Elvezio;Salaar Khan;Laureen Zubiaurre Bitzer;Letty Moss;Steven Feiner - 通讯作者:
Steven Feiner
Steven Feiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Feiner', 18)}}的其他基金
REU Site: Collaborative: Making Augmented and Virtual Reality Accessible
REU 网站:协作:让增强现实和虚拟现实变得触手可及
- 批准号:
2051053 - 财政年份:2021
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Augmented Reality for Multiple People, Perspectives, Platforms, and Tasks
CHS:媒介:协作研究:多人、视角、平台和任务的增强现实
- 批准号:
1514429 - 财政年份:2015
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
Workshop: UIST 2012 Doctoral Symposium
研讨会:UIST 2012博士生研讨会
- 批准号:
1245112 - 财政年份:2012
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
WORKSHOP: UIST 2011 Doctoral Symposium
研讨会:UIST 2011 博士生研讨会
- 批准号:
1137247 - 财政年份:2011
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
Workshop: User Interface Software and Technology (UIST) 2009 Doctoral Symposium
研讨会:用户界面软件与技术(UIST)2009年博士生研讨会
- 批准号:
0948521 - 财政年份:2009
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: Generating Effective Dynamic Explanations in Augmented Reality
HCC:媒介:协作研究:在增强现实中生成有效的动态解释
- 批准号:
0905569 - 财政年份:2009
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
ITR: Environment Management for Hybrid User Interfaces
ITR:混合用户界面的环境管理
- 批准号:
0082961 - 财政年份:2000
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
CISE Research Instrumentation: Software Technology for Small, Mobile Computers with Advanced User Interfaces
CISE 研究仪器:具有高级用户界面的小型移动计算机的软件技术
- 批准号:
9223009 - 财政年份:1993
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
相似国自然基金
强散射水下环境中的偏振成像增强技术及其适应性优化
- 批准号:62001382
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于强情境化分析的项目适应性环境管理研究
- 批准号:71971107
- 批准年份:2019
- 资助金额:48 万元
- 项目类别:面上项目
南海北部强中尺度涡中短期可预报性与适应性观测研究
- 批准号:41776028
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
强紫外线辐射生境中南极冰藻光修复酶及其修复DNA紫外辐射损伤分子机制研究
- 批准号:41576187
- 批准年份:2015
- 资助金额:69.0 万元
- 项目类别:面上项目
强旋流适应性一体化消旋波瓣混合器射流掺混机理研究
- 批准号:51576193
- 批准年份:2015
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Scalable and Adaptable Sparsity-driven Methods for more Efficient AI Systems
职业:可扩展且适应性强的稀疏驱动方法,可实现更高效的人工智能系统
- 批准号:
2238291 - 财政年份:2023
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
Adaptable and scalable electroporation for cellular therapy
用于细胞治疗的适应性和可扩展的电穿孔
- 批准号:
10545845 - 财政年份:2022
- 资助金额:
$ 374.92万 - 项目类别:
ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
- 批准号:
10734591 - 财政年份:2019
- 资助金额:
$ 374.92万 - 项目类别:
CAREER: Scalable and Adaptable Cross-Domain Autonomous Health Assessment
职业:可扩展且适应性强的跨域自主健康评估
- 批准号:
1750936 - 财政年份:2018
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Web-architectures for Extensible, Adaptable and Scalable Manufacturing
EAGER/协作研究:可扩展、适应性和可扩展制造的网络架构
- 批准号:
1322748 - 财政年份:2013
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant