Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
基本信息
- 批准号:2103942
- 负责人:
- 金额:$ 127.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding and quantifying parameter sensitivity of simulated systems, such as the numerical models of physical systems and mathematical renderings of neural networks, are essential in simulation-based science (SBS) and scientific machine learning (SciML). They are the key ingredients in Bayesian inference and neural network training. Seizing on the opportunity of emerging open-source Earth system model development in the Julia high-level programming language, this project is endowing these open-source models with automatic differentiation (AD) enabled derivative information, making these converging data science and simulation-based science tools available to a much broader research and data science community. Enabling a general-purpose AD framework which can handle both large-scale Earth system models as well as SciML algorithms, such as physics-informed neural networks or neural differential equations, will enable seamless integration of these approaches for hybrid Bayesian inversion and Bayesian machine learning. It merges big data science, in which available data enable model discovery with sparse data science, and the model structure is exploited in the selection of surrogate models representing data-informed subspaces and fulfilling conservation laws. The emerging Julia language engages a new generation of researchers and software engineers, channeling much needed talent into computational science approaches to climate modeling. Through dedicated community outreach programs (e.g., Hackathons, Minisymposia, Tutorials) the project team will be working toward increasing equity, diversity, and inclusion across the participating disciplines.The project is developing a framework for universal differentiable programming and open-source, general-purpose AD that unifies these algorithmic frameworks within Julia programming language. The general-purpose AD framework in Julia leverages the composability of Julia software packages and the differentiable programming approach that underlies many of the SciML and high-performance scientific computing packages. Compared to most current modeling systems targeted for HPC, Julia is ideally suited for heterogeneous parallel computing hardware (e.g., CUDA, ROCm, oneAPI, ARM, PowerPC, x86 64, TPUs). The project is bringing together expertise in AD targeted at Earth system data assimilation in high performance computing environments with SciML expertise. The project team is working with the Julia Computing organization and package developers to ensure sustainability of the developed frameworks. The project’s Earth system flagship applications consist of (i) an open-source, AD-enabled ocean general circulation model that is being developed separately as part of the Climate Modelling Alliance (CliMA), and (2) an open-source, AD-enabled ice flow model. Each of these application frameworks is being made available to the community for science application, in which derivative (gradient or Hessian) information represent key algorithmic enabling tools. These include SciML-based training of surrogate models (data-driven and/or model-informed), parameter and state estimation, data assimilation for model initialization, uncertainty quantification (Hessian-based and gradient-informed MCMC) and quantitative observing system design. Academic and industry partners are involved, who are using the frameworks for developing efficient power grids, personalized precision pharmacometrics, and improved EEG design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在基于模拟的科学(SBS)和科学机器学习(SCIML)中,了解和量化模拟系统的参数敏感性,例如物理系统的数值模型和神经网络的数学渲染。它们是贝叶斯推论和神经网络培训的关键归纳。该项目抓住了朱莉娅高级编程语言中新兴的开源地球系统模型开发的机会,该项目正在赋予这些开源模型具有自动差异化(AD)启用衍生派生信息,从而使这些收敛的数据科学和基于模拟的科学工具可用于更广泛的研究和数据科学社区。启用可以处理大规模接地系统模型以及SCIML算法的通用AD框架,例如物理知识的神经元网络或神经元微分方程,将无缝整合这些方法,以实现流质贝叶斯逆转录和Bayesian Inversion和Bayesian Machine学习。它合并了大数据科学,其中可用的数据使模型发现与稀疏数据科学,并在代表数据信息空间和实现保护法的替代模型的选择中探索了模型结构。新兴的朱莉娅语言与新一代的研究人员和软件工程师联系在一起,将急需的人才引入了计算科学的攀登模型方法。通过敬业的社区外展计划(例如,黑客马拉松,迷你典意,教程),项目团队将致力于增加参与学科的公平,多样性和包容性。该项目正在为这些Algorithmic segrancoms in julia segralmitss in julia segrallia semporments of templeliass开发一个通用的可区分编程和开放式编程和开放式编程的框架。朱莉娅(Julia)中的通用广告框架利用了朱莉娅软件包的合成性和可区分的编程方法,这些方法是许多SCIML和高性能科学计算套件的基础。与针对HPC的大多数当前建模系统相比,Julia非常适合异质并行计算硬件(例如CUDA,ROCM,ONEAPI,ONEAPI,ONEAPI,ARM,POWERPC,POWERPC,X86 64,TPU)。该项目将针对地球系统数据同化的广告中的专业知识汇总在具有SCIML专业知识的高性能计算环境中。项目团队正在与朱莉娅计算机组织和包装开发人员合作,以确保开发框架的可持续性。该项目的地球系统旗舰应用程序由(i)开源,启用广告的海洋循环模型,该模型正在作为气候建模联盟(CLIMA)的一部分分别开发,以及(2)开源的,具有ad的冰流模型。这些应用程序框架中的每一个都可以提供给社区的科学应用程序,其中衍生(梯度或黑森)信息代表关键算法启用工具。其中包括基于SCIML的替代模型培训(数据驱动和/或模型信息),参数和状态估计,模型初始化的数据同化,不确定性定量(基于Hessian的和基于梯度的MCMC)以及定量观察者系统设计。涉及学术和行业合作伙伴,他们正在使用框架来开发有效的电网,个性化的精确药物计量学和改进的EEG设计。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估来获得的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme
- DOI:10.1145/3458817.3476165
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:William S. Moses;Valentin Churavy;Ludger Paehler;J. Hückelheim;S. Narayanan;Michel Schanen;J. Doerfert
- 通讯作者:William S. Moses;Valentin Churavy;Ludger Paehler;J. Hückelheim;S. Narayanan;Michel Schanen;J. Doerfert
The Computational Science of Klaus Hasselmann
- DOI:10.1109/mcse.2022.3195105
- 发表时间:2022-07
- 期刊:
- 影响因子:2.1
- 作者:P. Heimbach
- 通讯作者:P. Heimbach
Road Map for the Next Decade of Earth System Reanalysis in the United States
美国未来十年地球系统再分析路线图
- DOI:10.1175/bams-d-23-0011.1
- 发表时间:2023
- 期刊:
- 影响因子:8
- 作者:Frolov, Sergey;Rousseaux, Cécile S.;Auligne, Tom;Dee, Dick;Gelaro, Ron;Heimbach, Patrick;Simpson, Isla;Slivinski, Laura
- 通讯作者:Slivinski, Laura
SICOPOLIS-AD v2: tangent linear and adjoint modelingframework for ice sheet modeling enabled by automatic differentiationtool Tapenade
SICOPOLIS-AD v2:由自动微分工具 Tapenade 支持的冰盖建模的切线线性和伴随建模框架
- DOI:10.21105/joss.04679
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gaikwad, Shreyas Sunil;Hascoet, Laurent;Narayanan, Sri Hari;Curry-Logan, Liz;Greve, Ralf;Heimbach, Patrick
- 通讯作者:Heimbach, Patrick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Heimbach其他文献
Open Code Policy for NASA Space Science: A Perspective from NASA-Supported Ocean Modeling and Ocean Data Analysis
NASA 空间科学的开放代码政策:NASA 支持的海洋建模和海洋数据分析的视角
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Gille;Ryan Abernathey;T. Chereskin;B. Cornuelle;Patrick Heimbach;M. Mazloff;Cesar B. Rocha;Saulo Soares;Maike Sonnewald;Bia Villas Boas;Jinbo Wang - 通讯作者:
Jinbo Wang
MITgcm-AD v2: Open source tangent linear and adjoint modeling framework for the oceans and atmosphere enabled by the Automatic Differentiation tool Tapenade
- DOI:
10.1016/j.future.2024.107512 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Shreyas Sunil Gaikwad;Sri Hari Krishna Narayanan;Laurent Hascoët;Jean-Michel Campin;Helen Pillar;An Nguyen;Jan Hückelheim;Paul Hovland;Patrick Heimbach - 通讯作者:
Patrick Heimbach
Patrick Heimbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Heimbach', 18)}}的其他基金
AccelNet-Implementation: Implementing a Deep Ocean Observing Strategy (iDOOS)
AccelNet-Implementation:实施深海观测策略 (iDOOS)
- 批准号:
2114717 - 财政年份:2021
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Subpolar North Atlantic Processes - Dynamics and pRedictability of vAriability in Gyre and OverturNing (SNAP-DRAGON)
NSFGEO-NERC:合作研究:北大西洋次极过程 - 环流和翻转变化的动力学和可预测性 (SNAP-DRAGON)
- 批准号:
2038422 - 财政年份:2020
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the AMOC arrays and models to understand heat and freshwater transports in the North Atlantic
合作研究:利用 AMOC 阵列和模型了解北大西洋的热量和淡水输送
- 批准号:
1924546 - 财政年份:2019
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Paleochronometry as a control problem for recovering holocene climate variations over the Greenland Ice Sheet
古年代学作为恢复格陵兰冰盖全新世气候变化的控制问题
- 批准号:
1903596 - 财政年份:2019
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Submarine Melting and Freshwater Export in Greenland's Glacial Fjords: The Role of Subglacial Discharge, Fjord Topography and Shelf Properties
合作研究:格陵兰岛冰川峡湾的海底融化和淡水输出:冰下排放、峡湾地形和陆架特性的作用
- 批准号:
1737759 - 财政年份:2017
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: From Adjoints for the Few to Adjoints for the Many: Integrating the Use of Adjoint Methods in Earth System Modeling
协作研究:从少数人的伴随到多人的伴随:在地球系统建模中整合伴随方法的使用
- 批准号:
1751120 - 财政年份:2017
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the controls on spatial and temporal variability in ice discharge using a Greenland-wide ice sheet model
合作研究:使用格陵兰冰盖模型了解冰排放时空变化的控制
- 批准号:
1603854 - 财政年份:2016
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: A Bering Strait Ocean Observing System for the Pacific Inflow to the Arctic - a fundamental part of the Arctic Observing Network
合作研究:白令海峡太平洋流入北极海洋观测系统——北极观测网络的基本组成部分
- 批准号:
1640357 - 财政年份:2016
- 资助金额:
$ 127.9万 - 项目类别:
Continuing Grant
Collaborative Research: Submarine Melting of Greenland's Glaciers: What are the relevant ocean dynamics?
合作研究:格陵兰岛冰川海底融化:相关的海洋动力学是什么?
- 批准号:
1550290 - 财政年份:2015
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Submarine Melting and Freshwater Export in Greenland's Glacial Fjords: The Role of Subglacial Discharge, Fjord Topography and Shelf Properties
合作研究:格陵兰岛冰川峡湾的海底融化和淡水输出:冰下排放、峡湾地形和陆架特性的作用
- 批准号:
1434149 - 财政年份:2014
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
相似国自然基金
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:22204104
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
- 批准号:61571362
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
- 批准号:61571033
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
- 批准号:61401510
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 127.9万 - 项目类别:
Standard Grant