Long-Range Spin Transport in Light-Metal Alloys

轻金属合金中的长程自旋输运

基本信息

  • 批准号:
    2103711
  • 负责人:
  • 金额:
    $ 43.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractMagnetic materials are ubiquitous in technology, from the permanent magnets all around us to the precisely engineered magnetic materials in the powerful hard disk drives that enable cloud data storage. Spintronics is the scientific field that underpins such technologies, based on control of the property of electrons known as spin. One major limitation in the field of spintronics is that is very challenging to move electron spins over even microscopic distances; the ability to do so would unlock extraordinary technological potential, including massively reducing the power consumption of computers. This project is addressing exactly this challenge, not only seeking long-range transport of electron spins, but doing so in industrially-relevant materials based on simple metals. In addition to advancing the fundamental understanding of the physics of this process, broader impacts are being achieved through the high technological relevance of the work, through education and training of graduate and undergraduate students (thus contributing to a skilled US workforce in the electronic device sector), and through outreach to the public in conjunction with the Science Museum of Minnesota. Technical Abstract In spintronics, injection of spins across interfaces, and their subsequent transport, is central to the function of many devices. Such devices have already massively impacted data storage and processing, with potential for further advances. One particularly exciting prospect is long-range spin transport through materials, which could realize transformative capabilities such as spin interconnects and spin accumulation sensors. Fundamental research on long-range spin transport has focused almost entirely on semiconductors and insulators, despite metallic spintronics being well-established and amenable to technology. This is because spin diffusion lengths in conventional polycrystalline non-magnetic metallic thin films are typically only 100’s of nm, limited by defect-induced spin relaxation. This project seeks to directly alleviate this limitation. Orders-of-magnitude increases in spin diffusion lengths in nonmagnetic metallic thin films are being sought via novel application of rationally-designed light-metal alloys, using theory-guided compositional tuning of electronic structure and band filling to controllably suppress spin relaxation. In addition to advancing the fundamental understanding of the relevant physics, broader impacts are being achieved through the high technological relevance of the work, through education and training of graduate and undergraduate students, and through outreach to the public in conjunction with the Science Museum of Minnesota.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要磁性材料在技术中无处不在,从我们周围的永磁体到支持云数据存储的强大硬盘驱动器中精确设计的磁性材料,自旋电子学是支撑此类技术的科学领域,其基础是对磁性的控制。自旋电子学领域的一个主要限制是,在微观距离上移动电子自旋是非常具有挑战性的,这样做将释放非凡的技术潜力,包括大幅降低功率。该项目正是解决这一挑战,不仅寻求电子自旋的长距离传输,而且在基于简单金属的工业相关材料中实现这一点,除了增进对这一过程的物理原理的基本理解之外,通过工作的高度技术相关性、研究生和本科生的教育和培训(从而为美国电子设备行业培养熟练的劳动力)以及与科学博物馆合作向公众进行宣传,正在实现更广泛的影响明尼苏达州的技术摘要在自旋电子学中,注入跨界面的自旋及其随后的传输是许多设备功能的核心,此类设备已经对数据存储和处理产生了巨大的影响,其中一个特别令人兴奋的前景是通过材料的远程自旋传输。实现自旋互连和自旋累积传感器等变革能力尽管金属自旋电子学已经成熟并且适合技术,但长程自旋输运的基础研究几乎完全集中在半导体和绝缘体上,这是因为传统的自旋扩散长度。多晶非磁性金属薄膜通常只有 100 纳米,受到缺陷引起的自旋弛豫的限制,该项目旨在通过直接缓解非磁性金属薄膜中自旋扩散长度的数量级增加。合理设计的轻金属合金的新颖应用,利用理论指导的电子结构和能带填充的成分调整来可控地抑制自旋弛豫除了增进对相关物理学的基本理解之外,通过工作的高技术相关性、研究生和本科生的教育和培训以及与明尼苏达州科学博物馆一起向公众进行宣传,正在实现更广泛的影响。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental Realization of the 1D Random Field Ising Model
  • DOI:
    10.1103/physrevlett.127.207203
  • 发表时间:
    2021-11-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bingham, N. S.;Rooke, S.;Schiffer, P.
  • 通讯作者:
    Schiffer, P.
High spin polarization and spin signal enhancement in non-local spin valves with Co–Fe alloy injectors and detectors
使用 Co-Fe 合金注射器和探测器的非局部自旋阀中的高自旋极化和自旋信号增强
  • DOI:
    10.1063/5.0147465
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Kaiser, B.;Ramberger, J.;Watts, J. D.;Dewey, J.;Leighton, C.
  • 通讯作者:
    Leighton, C.
Topological kinetic crossover in a nanomagnet array
纳米磁体阵列中的拓扑动力学交叉
  • DOI:
    10.1126/science.add6575
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Zhang, Xiaoyu;Fitez, Grant;Subzwari, Shayaan;Bingham, Nicholas S.;Chioar, Ioan-Augustin;Saglam, Hilal;Ramberger, Justin;Leighton, Chris;Nisoli, Cristiano;Schiffer, Peter
  • 通讯作者:
    Schiffer, Peter
Collective Ferromagnetism of Artificial Square Spin Ice
  • DOI:
    10.1103/physrevlett.129.067201
  • 发表时间:
    2022-08-05
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bingham, N. S.;Zhang, X.;Schiffer, P.
  • 通讯作者:
    Schiffer, P.
Entropy-driven order in an array of nanomagnets
  • DOI:
    10.1038/s41567-022-01555-6
  • 发表时间:
    2022-04-07
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Saglam, Hilal;Duzgun, Ayhan;Schiffer, Peter
  • 通讯作者:
    Schiffer, Peter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Leighton其他文献

Christopher Leighton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Leighton', 18)}}的其他基金

University of Minnesota Materials Research Science and Engineering Center
明尼苏达大学材料研究科学与工程中心
  • 批准号:
    2011401
  • 财政年份:
    2020
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Cooperative Agreement
Understanding Spin Diffusion Lengths in Metals and Oxides
了解金属和氧化物中的自旋扩散长度
  • 批准号:
    1807124
  • 财政年份:
    2018
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
Spin Transport in Metals and Oxides
金属和氧化物中的自旋输运
  • 批准号:
    1507048
  • 财政年份:
    2015
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
Engineering Interface Magnetism via Defect Control in Complex Oxide Heterostructures
通过复杂氧化物异质结构中的缺陷控制来工程界面磁性
  • 批准号:
    1206278
  • 财政年份:
    2012
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
Magnetotransport in Perovskite Films and Heterostructures
钙钛矿薄膜和异质结构中的磁输运
  • 批准号:
    0804432
  • 财政年份:
    2008
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a High Pressure Oxygen Sputtering System for Research and Education in Oxide Heterostructures
MRI:购买高压氧溅射系统用于氧化物异质结构的研究和教育
  • 批准号:
    0821256
  • 财政年份:
    2008
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
Magnetoelectronic Properties of Perovskite Heterostructures
钙钛矿异质结构的磁电性能
  • 批准号:
    0509666
  • 财政年份:
    2005
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
Acquisition of a SQUID Magnetometer for Research and Education in Magnetic Materials
购买 SQUID 磁力计用于磁性材料的研究和教育
  • 批准号:
    0315326
  • 财政年份:
    2003
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
Acquisition of a Reactive Sputtering System for Magnetic Oxide Thin Film Research and Education
购置用于磁性氧化物薄膜研究和教育的反应溅射系统
  • 批准号:
    0211117
  • 财政年份:
    2002
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant

相似国自然基金

高速流动性黄土滑坡前缘冲挤效应及致灾范围预测模型研究
  • 批准号:
    42307216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽过冷度范围内仿生亲疏水复合类液体表面强化滴状冷凝传热机理研究
  • 批准号:
    52305220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无监督表征优化的广域范围滑坡敏感性精准分析方法
  • 批准号:
    42301479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于虚拟合成波长的光纤分布式声波传感动态范围扩展机理与方法
  • 批准号:
    62305177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于宽带随机OEO的高空间分辨率、大动态范围相关法光时域反射技术研究
  • 批准号:
    62305116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Long-Range Exchange Coupling between Ge-Hole Spin Quantum Systems
Ge-Hole自旋量子系统之间的长程交换耦合
  • 批准号:
    2579794
  • 财政年份:
    2021
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Studentship
Long-range guided surface waves with transverse spin and subwavelength confinement for optical switching and sensing
具有横向自旋和亚波长限制的长程引导表面波,用于光学开关和传感
  • 批准号:
    21H01383
  • 财政年份:
    2021
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PM: RUI: Searching for Optical Cycling in TlF and Long-Range Spin-Spin Interactions
PM:RUI:寻找 TlF 和长程自旋-自旋相互作用中的光学循环
  • 批准号:
    2110523
  • 财政年份:
    2021
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
Long-Range Periodic Assembly of Stable pi-Radical Ions and Its Charge and Spin Transporting Property
稳定π自由基离子的长程周期性组装及其电荷和自旋输运特性
  • 批准号:
    19F19374
  • 财政年份:
    2019
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
RUI: A Search for Long-Range Spin-Spin Interactions and Optical Forces in TlF
RUI:在 TlF 中寻找长程自旋-自旋相互作用和光学力
  • 批准号:
    1806297
  • 财政年份:
    2018
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了