Collaborative Research: Frameworks: Seismic COmputational Platform for Empowering Discovery (SCOPED)
合作研究:框架:增强发现能力的地震计算平台(SCOPED)
基本信息
- 批准号:2103494
- 负责人:
- 金额:$ 64.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Seismology is the most powerful tool for investigating the interior structure of Earth—from its surface down to the inner core—and its wide range of processes, including earthquakes, volcanic activity, glacial processes, oceanic and environmental processes, and human-caused processes such as nuclear explosions or hydraulic fracturing in oil and gas exploration. Seismology cannot achieve its greatest potential without harnessing state-of-the-art computing capabilities for the dual purpose of scientific modeling and analysis of rapidly increasing data sets. The SCOPED (Seismic COmputational Platform for Empowering Discovery) project establishes a computing platform that delivers data, computation, and service to the seismological community in a way that promotes education, innovation, and discovery, and enables efficient solutions to outstanding scientific problems in geophysics. By focusing on openly available data, openly available software, and virtual training, SCOPED opens seismological research to a broad range of users. Four research components emphasize openly available software for the purpose of characterizing Earth's subsurface structure and the wide range of natural and man-made events that are recorded by seismometers every day. Training of seismologists is a central focus of the project. SCOPED training workshops (seismoHackweeks) are open to the community. Emphasis on virtual research and training diversifies strategies to engage minority groups entering computational geosciences. The project trains a new generation of seismologists to harness the latest capabilities for processing and modeling large data sets. The SCOPED project establishes cyberinfrastructure that provides fast access to large seismic archives from a suite of containerized open-source computational tools for big data analysis, machine learning, and high-performance simulations. The implementation focuses on four interconnected, compute- and data-intensive research components: seismic imaging of Earth’s interior, waveform modeling of earthquakes and Earth structure, monitoring of Earth structure using ambient noise, and precision monitoring of earthquakes and faults. Each research component is enabled by open-source codes that meet, or aspire to meet, best practices for software development. The project contains several transformative components. First, it offers compute performance for both model- and data-driven seismological problems. Hundreds of terabytes of waveform data are directly accessible both to modelers—for data assimilation problems—and to data scientists for processing, analysis, and exploration. Second, it establishes a direct collaborative link among four teams of seismologists at four institutions and a team of computational scientists at Texas Advanced Computing Center. This unity reflects the necessity of both groups to achieve research-ready codes that can exploit high-performance computing (HPC) and Cloud systems. Third, it establishes a gateway with ready-to-run (or adapt) container images and data as a service for the seismological community. Fourth, it develops computational tools that promote the democratization of HPC/Cloud with cutting-edge data processing and modeling software through their scalability from laptops to HPC or Cloud systems and through their portability with containerization. Finally, although the development of cyberinfrastructure is the main priority, ancillary scientific results from advanced techniques are expected to offer insights into fundamental seismological problems. The project has the potential for discoveries across fields (seismology, Earth science, computer science, data science, material science), as well as societal relevance in the realms of seismic hazard assessment, environmental science, cryosphere, earthquake early warning, energy systems, and geophysical detection of nuclear proliferation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地震学是研究地球内部结构(从表面到内核)及其广泛过程的最强大工具,包括地震、火山活动、冰川过程、海洋和环境过程以及人为过程,例如正如石油和天然气勘探中的核爆炸或水力压裂一样,如果不利用最先进的计算能力对快速增长的数据集进行科学建模和分析,地震学就无法发挥其最大潜力。 (Seismic COmputational Platform for Empowering Discovery)项目建立了一个计算平台,以促进教育、创新和发现的方式向地震界提供数据、计算和服务,并通过聚焦有效解决地球物理学中的突出科学问题。基于公开可用的数据、公开可用的软件和虚拟培训,SCOPED 向广泛的用户开放地震学研究,四个研究部分强调公开可用的软件,以描述地球地下结构和广泛的自然特征。地震仪每天记录的人造事件是该项目的核心重点,该项目向社区开放,强调虚拟研究和培训,以吸引少数群体进入计算领域。该项目培训新一代地震学家利用最新的能力来处理和建模大型数据集,该项目建立了网络基础设施,可以快速访问大型地震档案。用于大数据分析、机器学习和高性能模拟的容器化开源计算工具套件,其实施重点关注四个相互关联的计算和数据密集型研究组件:地球内部的地震成像、地震和地球的波形建模。结构、利用环境噪声监测地球结构以及精确监测地震和断层。每个研究组件均由满足或渴望满足软件开发最佳实践的开源代码支持。 ,它提供计算建模者可以直接访问数百 TB 的波形数据(用于数据同化问题),数据科学家也可以进行处理、分析和探索。四个机构的四个地震学家团队和德克萨斯州高级计算中心的一个计算科学家团队之间的这种团结反映了两个小组实现可利用高性能计算(HPC)和云系统的研究就绪代码的必要性。它为地震界建立了一个具有可立即运行(或适应)的容器图像和数据即服务的网关。第四,它开发了计算工具,通过尖端的数据处理和建模软件来促进 HPC/云的民主化。最后,尽管网络基础设施的发展是主要优先事项,但先进技术的辅助科学成果预计将为基本地震学问题提供见解。跨领域(地震学、地球科学、计算机科学、数据科学、材料科学)发现的潜力,以及地震灾害评估、环境科学、冰冻圈、地震早期预警、能源系统和地球物理探测领域的社会相关性该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yinzhi Wang其他文献
Performance Comparison of Julia Distributed Implementations of Dirichlet Process Mixture Models
Dirichlet 过程混合模型的 Julia 分布式实现的性能比较
- DOI:
10.1109/bigdata47090.2019.9005453 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ruizhu Huang;Weijia Xu;Yinzhi Wang;S. Liverani;A. Stapleton - 通讯作者:
A. Stapleton
(U-Th)/He thermochronology of metallic ore deposits in the Liaodong Peninsula: Implications for orefield evolution in northeast China
辽东半岛金属矿床(U-Th)/He热年代学:对中国东北地区矿田演化的启示
- DOI:
10.1016/j.oregeorev.2017.11.025 - 发表时间:
2018 - 期刊:
- 影响因子:3.3
- 作者:
Yinzhi Wang;Fei Wang;Lin Wu;Wenbei Shi;Liekun Yang - 通讯作者:
Liekun Yang
Automatic BLAS Offloading on Unified Memory Architecture: A Study on NVIDIA Grace-Hopper
统一内存架构上的自动 BLAS 卸载:NVIDIA Grace-Hopper 的研究
- DOI:
10.1145/3626203.3670561 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junjie Li;Yinzhi Wang;Xiao Liang;Hang Liu - 通讯作者:
Hang Liu
Perspectives and Experiences Supporting Containers for Research Computing at the Texas Advanced Computing Center
德克萨斯高级计算中心支持研究计算容器的观点和经验
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Erik Ferlanti;William J. Allen;Ernesto A. B. F. Lima;Yinzhi Wang;John Fonner - 通讯作者:
John Fonner
Optimizing GPU-Enhanced HPC System and Cloud Procurements for Scientific Workloads
优化 GPU 增强型 HPC 系统和科学工作负载的云采购
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
R. T. Evans;M. Cawood;Stephen Lien Harrell;Lei Huang;Si Liu;Chun;Amit Ruhela;Yinzhi Wang;Zhao Zhang - 通讯作者:
Zhao Zhang
Yinzhi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yinzhi Wang', 18)}}的其他基金
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:
2402542 - 财政年份:2024
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant
Elements: PASSPP: Provenance-Aware Scalable Seismic Data Processing with Portability
要素: PASSPP:具有可移植性的来源感知可扩展地震数据处理
- 批准号:
1931352 - 财政年份:2019
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant
相似国自然基金
中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
- 批准号:32372565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金属有机框架对M-Nx基PEMFCs阴极催化层的多重调控机制研究
- 批准号:22375017
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新框架土壤生物促进或抑制外来植物入侵发生条件和机制研究
- 批准号:32371749
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于共价有机框架薄膜的气体传感器及其敏感机理研究
- 批准号:62371299
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 64.68万 - 项目类别:
Standard Grant