OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures

OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析

基本信息

  • 批准号:
    2034850
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Systems for High Performance Computing (HPC) have been providing rapidly increasing computing power. However, this growth has also led to systems where the memory and data movement bandwidth is relatively lower. This makes analyzing the data from scientific simulations very challenging. A paradigm called in-situ analytics has emerged in response. This project is further improving this paradigm, by using what can be referred to as homomorphic compressions. The idea of homomorphic compression is to compress the data in a way that queries can be directly executed on the compressed data (without need for decompression). This project is developing such compression methods, developing techniques to perform such compression efficiently on Graphic Processing Units (GPUs), techniques for query processing using such compressed representations, and finally, an overall system that will simplify development of in-situ analytics implementations. Overall, this project will be making analysis of data from simulations more effective on the upcoming systems for HPC. This project will seek to broaden participation in computing through direct participation in the project development teams by undergraduate and graduate students from under-represented groups. Systems for High Performance Computing (HPC) have been providing rapidly increasing computing power. However, this growth has also led to systems where the memory and data movement bandwidth is relatively lower. This makes analyzing the data from scientific simulations very challenging. A paradigm called in-situ analytics has emerged in response. This project is further improving this paradigm, by using what can be referred to as homomorphic compressions. The idea of homomorphic compression is to compress the data in a way that queries can be directly executed on the compressed data (without need for decompression). The resulting framework, ICURE, can facilitate in situ analytics on accelerators themselves, reduce overall memory requirements for the analytics, reduce total data movements costs, and even reduce the time cost of performing the analytics. Achieving the goals of ICURE involves many open challenges. The first is the choice of summarization structure and its constructions. This project experiments with two different summary or concise representations: bitmap indices and an integrated value index. The second issue is analyses methods using summary and compressed representations, where the focus is on the use of these representations for a variety of analyses tasks: computing aggregations, correlations, value-based joins, time-step selection, and interesting subregions analysis. The third issue is automating placement and quality. Driven by the consideration of providing the lowest interference between the simulation and analytics, this project automates decisions on placement of specific analytics operations and data within the node of HPC system. Similarly, automatic selection of sampling level driven by desired accuracy and overheads of the analyses is performed. This project will seek to broaden participation in computing through direct participation in the project development teams by undergraduate and graduate students from under-represented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高性能计算 (HPC) 系统一直在提供快速增长的计算能力。然而,这种增长也导致系统内存和数据移动带宽相对较低。 这使得分析科学模拟的数据变得非常具有挑战性。 作为回应,一种称为原位分析的范式应运而生。 该项目通过使用所谓的同态压缩来进一步改进这一范例。 同态压缩的思想是以可以直接对压缩数据执行查询的方式来压缩数据(无需解压)。 该项目正在开发此类压缩方法、在图形处理单元 (GPU) 上高效执行此类压缩的技术、使用此类压缩表示进行查询处理的技术,以及最终将简化现场分析实现开发的整体系统。 总体而言,该项目将使即将推出的 HPC 系统上的模拟数据分析更加有效。 该项目将寻求通过来自代表性不足群体的本科生和研究生直接参与项目开发团队来扩大对计算的参与。 高性能计算 (HPC) 系统一直在提供快速增长的计算能力。然而,这种增长也导致系统内存和数据移动带宽相对较低。 这使得分析科学模拟的数据变得非常具有挑战性。 作为回应,一种称为原位分析的范式应运而生。 该项目通过使用所谓的同态压缩来进一步改进这一范例。 同态压缩的思想是以可以直接对压缩数据执行查询的方式来压缩数据(无需解压)。 由此产生的框架 ICURE 可以促进加速器本身的原位分析,减少分析的总体内存需求,减少总数据移动成本,甚至减少执行分析的时间成本。 实现 ICURE 的目标涉及许多开放的挑战。首先是摘要结构及其构造的选择。该项目尝试了两种不同的摘要或简洁表示:位图索引和综合值索引。第二个问题是使用摘要和压缩表示的分析方法,其中重点是将这些表示用于各种分析任务:计算聚合、相关性、基于值的连接、时间步长选择和有趣的子区域分析。 第三个问题是自动化布局和质量。出于在模拟和分析之间提供最低干扰的考虑,该项目自动决定在 HPC 系统节点内放置特定分析操作和数据。类似地,执行由所需精度和分析开销驱动的采样水平的自动选择。该项目将寻求通过来自代表性不足群体的本科生和研究生直接参与项目开发团队来扩大对计算的参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
End-to-End LU Factorization of Large Matrices on GPUs
GPU 上大型矩阵的端到端 LU 分解
  • DOI:
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Xia; Peng Jiang
  • 通讯作者:
    Peng Jiang
Scaling and Selecting GPU Methods for All Pairs Shortest Paths (APSP) Computations
为所有对最短路径 (APSP) 计算缩放和选择 GPU 方法
GCD2: A Globally Optimizing Compiler for Mapping DNNs to Mobile DSPs
GCD2:用于将 DNN 映射到移动 DSP 的全局优化编译器
DNNFusion: accelerating deep neural networks execution with advanced operator fusion
DNNFusion:通过高级算子融合加速深度神经网络的执行
  • DOI:
    10.1145/3453483.3454083
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niu, Wei;Guan, Jiexiong;Wang, Yanzhi;Agrawal, Gagan;Ren, Bin
  • 通讯作者:
    Ren, Bin
GPU Adaptive In-situ Parallel Analytics (GAP)
GPU 自适应原位并行分析 (GAP)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gagan Agrawal其他文献

Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption
多维范围可搜索加密中组织检索记录
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahdieh Heidaripour;Ladan Kian;Maryam Rezapour;Mark Holcomb;Benjamin Fuller;Gagan Agrawal;Hoda Maleki
  • 通讯作者:
    Hoda Maleki
SecFob: A Remote Keyless Entry Security Solution
SecFob:远程无钥匙进入安全解决方案
2014 IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014
2014 IEEE 第 28 届国际并行和分布式处理研讨会,美国亚利桑那州菲尼克斯,2014 年 5 月 19-23 日
  • DOI:
    10.1109/ipdps30335.2014
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutong Lu;Mehmet Deveci;S. Rajamanickam;V. Leung;Kevin Pedretti;Stephen L. Olivier;David P. Bunde;Umit V. Çatalyürek;L. Peh;Gagan Agrawal;Marcelo Veiga Neves;César A.F. De Rose;K. Katrinis;Hubertus Franke;Yi Yang;Ping Xiang;Michael Mantor;Norman Rubin;Lisa Hsu;Qunfeng Dong;Yuki Abe;Hiroshi Sasaki;Shinpei Kato;Koji Inoue;Alex Ramirez;Jian Huang;Xuechen Zhang;G. Eisenhauer;Karsten Schwan;Matt Wolf;Stephane Ethier;B. Ravindran
  • 通讯作者:
    B. Ravindran
SoD2: Statically Optimizing Dynamic Deep Neural Network Execution
  • DOI:
    10.1145/3617232.3624869
  • 发表时间:
    2024-02-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Niu;Gagan Agrawal;Bin Ren
  • 通讯作者:
    Bin Ren
Scalable Deep Graph Clustering with Random-walk based Self-supervised Learning
具有基于随机游走的自监督学习的可扩展深度图聚类
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiang Li;Dongxu Li;Ruoming Jin;Gagan Agrawal;R. Ramnath
  • 通讯作者:
    R. Ramnath

Gagan Agrawal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gagan Agrawal', 18)}}的其他基金

SHF: Small: K-Way Speculation for Mapping Applications with Dependencies on Modern HPC Systems
SHF:小型:依赖现代 HPC 系统的地图应用程序的 K-Way 推测
  • 批准号:
    2334273
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF:SMALL: Compile-Parallelize-Schedule-Retarget-Repeat (EASER) Paradigm for Dealing with Extreme Heterogeneity
合作研究:SHF:SMALL:处理极端异构性的编译-并行化-调度-重定向-重复 (EASER) 范式
  • 批准号:
    2333895
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2333899
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF:SMALL: Compile-Parallelize-Schedule-Retarget-Repeat (EASER) Paradigm for Dealing with Extreme Heterogeneity
合作研究:SHF:SMALL:处理极端异构性的编译-并行化-调度-重定向-重复 (EASER) 范式
  • 批准号:
    2146852
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2007775
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: K-Way Speculation for Mapping Applications with Dependencies on Modern HPC Systems
SHF:小型:依赖于现代 HPC 系统的地图应用程序的 K-Way 推测
  • 批准号:
    2007793
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
II-New: Infrastructure for Energy-Aware High Performance Computing (HPC) and Data Analytics on Heterogeneous Systems
II-新:异构系统上的能源感知高性能计算 (HPC) 和数据分析基础设施
  • 批准号:
    1513120
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: Software Elements for Transfer and Analysis of Large-Scale Scientific Data
SI2-SSE:协作研究:用于大规模科学数据传输和分析的软件元素
  • 批准号:
    1339757
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

谷氨酸触发Grina介导的细胞核内钙内流抑制侧支形成机制研究
  • 批准号:
    82370409
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
伏隔核-腹侧被盖区-基底外侧杏仁核神经环路在小鼠氯胺酮成瘾中的机制研究
  • 批准号:
    82371900
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
核壳型咯菌腈控释体系防治小麦全生育期茎基腐病的释放行为及调控机制
  • 批准号:
    32372599
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CES3可变启动子选择性利用产物CES3-e的SUMO化促进核浆分布改变在子宫内膜癌孕激素抵抗中的分子机制
  • 批准号:
    82373339
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
  • 批准号:
    2244479
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2333899
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Core: Medium: Program Synthesis for Schema Changes
协作研究:SHF:核心:媒介:模式更改的程序综合
  • 批准号:
    2210831
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Core: Medium: Program Synthesis for Schema Changes
协作研究:SHF:核心:媒介:模式更改的程序综合
  • 批准号:
    2210832
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了