Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Films

合作研究:铁电氧化物薄膜中持久自旋纹理的设计和演示

基本信息

  • 批准号:
    2102895
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Modern electronics are based on moving electrons through nanoscale transistors made of semiconductors such as silicon. The exponential growth in computing power has been realized by shrinking the size of transistors and increasing their density. As the dimensions of transistors approach atomic scales, further miniaturization is not possible. An alternative route to computing and information processing exploits spin, an intrinsic property of elementary particles. Spintronics combines electronics with spin, allowing for devices for information processing and storage that have superior energy efficiency and reduced heat-generation. The limiting feature for the field remains transporting spins across nanoscale dimensions in magnetic materials without losing the stored information. This project exploits a relativistic quantum mechanical effect – spin-orbit interaction – along with crystalline symmetries to protect the state of the spin as it travels in non-magnetic materials. The research team will combine experimental work with simulations to realize a new class of thin film oxide materials for spintronics. Teaching and training of students at multiple levels is interwoven throughout the project. The project will broaden STEM participation by underrepresented students through public outreach events, curriculum development, and recruiting students to participate in interdisciplinary experimental research. The educational impact extends to high-school teachers, who will be recruited to participate in research and develop materials physics modules for their classrooms. These efforts will impact the next-generation workforce by endowing students with the problem solving skills needed for future careers in STEM.The desire to identify beyond Moore’s Law devices and technologies has driven increasing attention on a range of alternative computing devices, including using the spin rather than the charge of an electron. The limiting feature for the field of spin-orbit-based electronics is the difficulty in attaining both long-lived and fully controllable spins from conventional semiconductor and magnetic materials. The goal of this project is to design, discover, and demonstrate ferroelectric oxides embodying a symmetry-protected persistent spin texture, which permits information encoded in the spins to be robust to corruption as they propagate. Unique to this project is the use of atomic topology to achieve the novel spin textures in bulk materials with spin-orbit interactions, rather than by delicately balancing multiple, hard to control, interactions through conventional quantum-well structures. The project couples theory, simulation, and comprehensive experimentation with sophisticated thin film oxide growth methods to develop new theories and models for spin textures, identify and synthesize novel ferroelectric oxides exhibiting symmetry-determined spin textures, and explore electric-field tunability of the spin textures. Outcomes of the project include new descriptive and predictive theories for spin textures in complex materials, realization of novel complex transition metal oxide ferroelectrics, and demonstration of spin-based devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电子设备基于通过由硅等半导体制成的纳米级晶体管移动电子设备。通过缩小晶体管的大小和增加其密度,计算能力的指数增长已经实现。随着晶体管的尺寸接近原子量表,不可能进一步的微型化。计算和信息处理的另一种途径利用了自旋,这是基本粒子的内在特性。 Spintronics将电子与自旋结合在一起,可为具有较高能源效率和降低热发电的设备提供信息处理和存储设备。该场的限制特征仍然可以在磁性材料中跨纳米级尺寸运输旋转而不会丢失存储的信息。该项目利用相对论的量子机械效应 - 自旋轨道相互作用 - 以及晶体对称性,以保护自旋状态在非磁性材料中行驶时。研究团队将将实验性工作与模拟相结合,以实现新的薄膜氧化物材料用于Spintronics。在整个项目中,对多个级别的学生进行教学和培训。该项目将通过公共宣传活动,课程开发以及招募学生参加跨学科实验研究来扩大代表性不足的学生的STEM参与。教育影响扩展到高中老师,他们将被招募来参与研究和开发教室的材料物理模块。这些努力将通过赋予学生在STEM中未来职业所需的解决问题的技能来影响下一代劳动力。确定摩尔的法律设备和技术以外的愿望引起了人们对一系列替代计算设备的越来越多的关注,包括使用旋转而不是电子的负担。基于自旋轨道电子的领域的限制特征是难以从传统的半导体和磁性材料中获得长寿和完全控制的旋转。该项目的目的是设计,发现和演示体现了对称性保护的持续旋转纹理的铁电氧化物,这允许在旋转中编码的信息在传播时对腐败具有鲁棒性。该项目独有的是使用原子拓扑来实现具有旋转轨道相互作用的散装材料的新型自旋纹理,而不是通过常规的量子 - 孔结构清楚地平衡多个多种,难以控制的相互作用。该项目将理论,模拟和全面的实验与复杂的薄膜氧化膜生长方法进行,以开发新的旋转纹理理论和模型,识别和合成新型的铁电氧化物,表现出对称性确定的旋转质地,并探索自旋纹理的电场野合线性。该项目的结果包括复杂材料中旋转纹理的新描述性和预测性理论,新型复杂的过渡金属氧化金属铁电电的实现以及基于旋转的设备的演示。本奖奖反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响审查的审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Freestanding complex-oxide membranes
独立式复合氧化物膜
  • DOI:
    10.1088/1361-648x/ac7dd5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pesquera, David;Fernández, Abel;Khestanova, Ekaterina;Martin, Lane W
  • 通讯作者:
    Martin, Lane W
Field-induced heterophase state in PbZrO3 thin films
  • DOI:
    10.1103/physrevb.105.125409
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Burkovsky;G. Lityagin;A. Ganzha;A. Vakulenko;R. Gao;A. Dasgupta;Bin Xu;A. Filimonov;
  • 通讯作者:
    R. Burkovsky;G. Lityagin;A. Ganzha;A. Vakulenko;R. Gao;A. Dasgupta;Bin Xu;A. Filimonov;
Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors
  • DOI:
    10.1038/s41567-022-01773-y
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Jieun Kim;Abinash Kumar;Y. Qi;H. Takenaka;P. Ryan;D. Meyers;Jong-Woo Kim;Abel Fernandez;Z. Tian;A. Rappe;J. Lebeau;L. Martin
  • 通讯作者:
    Jieun Kim;Abinash Kumar;Y. Qi;H. Takenaka;P. Ryan;D. Meyers;Jong-Woo Kim;Abel Fernandez;Z. Tian;A. Rappe;J. Lebeau;L. Martin
Strain‐Induced Orbital Contributions to Oxygen Electrocatalysis in Transition‐Metal Perovskites
应变诱导轨道对转变中氧电催化的贡献金属钙钛矿
  • DOI:
    10.1002/aenm.202102175
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Fernandez, Abel;Caretta, Lucas;Das, Sujit;Klewe, Christoph;Lou, Djamila;Parsonnet, Eric;Gao, Ran;Luo, Aileen;Shafer, Padraic;Martin, Lane W.
  • 通讯作者:
    Martin, Lane W.
Topological phases in polar oxide nanostructures
  • DOI:
    10.1103/revmodphys.95.025001
  • 发表时间:
    2023-04-20
  • 期刊:
  • 影响因子:
    44.1
  • 作者:
    Junquera, Javier;Nahas, Yousra;Ramesh, R.
  • 通讯作者:
    Ramesh, R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lane Martin其他文献

Lane Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lane Martin', 18)}}的其他基金

Beyond Binary: Understanding Multi-State Stability in Ferroelectrics
超越二进制:了解铁电体的多态稳定性
  • 批准号:
    1708615
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemisorption-Induced Ultraviolet Quantum Well Optoelectronic Materials
合作研究:化学吸附诱导的紫外量子阱光电材料
  • 批准号:
    1608938
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Enhanced Pyroelectric and Electrocaloric Effects in Complex Oxide Thin Film Heterostructures
职业:复合氧化物薄膜异质结构中增强的热电和电热效应
  • 批准号:
    1451219
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CAREER: Enhanced Pyroelectric and Electrocaloric Effects in Complex Oxide Thin Film Heterostructures
职业:复合氧化物薄膜异质结构中增强的热电和电热效应
  • 批准号:
    1149062
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

载人飞行器-地形共融多平台协作起降机构设计及容错控制研究
  • 批准号:
    52305039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全感知智能力控机器人系统设计及安全人机协作控制方法研究
  • 批准号:
    U22A2060
  • 批准年份:
    2022
  • 资助金额:
    255.00 万元
  • 项目类别:
    联合基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
  • 批准号:
    62206091
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向人机协作的人机交互界面设计机制研究
  • 批准号:
    72271053
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了