Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts

合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应

基本信息

  • 批准号:
    2102238
  • 负责人:
  • 金额:
    $ 24.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Photocatalysis is an attractive technology for the sustainable, solar-driven chemical conversion of greenhouse gases, such as carbon dioxide, to value-added fuels and chemicals. To this end, the project explores the selective photocatalytic reduction of carbon dioxide by hydrogen into carbon monoxide and water. This reaction is also known as the reverse water-gas shift reaction (RWGS). The carbon monoxide product can be further transformed into a range of high-value chemicals and fuels. Among the earth-abundant metal and metal oxide materials that can serve as a catalyst for this reaction, copper-based nanocatalysts have emerged as one of the best candidates for the RWGS reaction. However, under conventional thermal energy-driven catalytic conditions, the copper nanocatalysts require relatively high operating reaction temperatures and suffer from less than desirable product selectivity. This research project aims to develop a novel photocatalytic approach to achieving superior catalytic activity and desired-product selectivity for the RWGS reaction. The project also demonstrates sustainable energy concepts to local elementary and high school students through various outreach activities, including Chemkidz events at schools across Oklahoma, Summer Science Camp in Appalachia (West Virginia), and National Lab Day events at the Oklahoma State University and West Virginia University campuses.In conventional catalytic processes, the dissipation of thermal energy drives the transformation of reactants on the surface of catalysts toward a variety of products. Challenges remain, however, for designing catalysts that can drive the breakage and formation of specific chemical bonds toward desirable products with the utmost selectivity. This research project develops a hybrid plasmonic photocatalytic approach for this purpose. Hybrid plasmonic photocatalysts consist of light-absorbing plasmonic metals surrounded by catalytic metals or metal oxides. The hybrid plasmonic photocatalytic approach offers a unique opportunity to control catalytic activity and selectivity using photon stimuli as an additional degree of freedom. In hybrid plasmonic photocatalysts, such as Cu core/Cu2O shell, the electron transfer from the Cu core to the Cu2O shell can occur by Landau damping-mediated hot-electron-transfer pathway or by chemical interface damping (CID). Although a fundamental understanding of the Landau damping-mediated hot-electron-transfer pathway is well established, design rules for the chemical interface damping pathway remain unknown. This collaborative project will develop design rules for chemical interface damping-induced electron-driven photochemistry. These rules will then be applied to the design of core/shell, Cu/Cu2O and Ag/Cu2O photocatalysts for the RWGS reaction. This research project also aims to distinguish the role of chemical interface damping- and Landau damping-mediated electron-transfer pathways in hybrid plasmonic photocatalysts using photocatalytic rate and quantum efficiency measurements and in-situ femtosecond transient-absorption spectroscopy. It is hypothesized that the chemical interface damping pathway will exhibit higher quantum efficiency and minimal local heating effects compared to the Landau damping pathway. Also, beyond the focus on Cu/Cu2O and Ag/Cu2O core/shell photocatalysts for the RWGS reaction, the design rules developed in this project can be applied to a wide range of other hybrid plasmonic nanostructures for photocatalytic and photovoltaic applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光催化是一种吸引人的技术,用于可持续,太阳能驱动的化学化学气体(例如二氧化碳)到增值燃料和化学物质的技术。为此,该项目探讨了通过氢碳化二氧化碳和水的选择性光催化还原。 该反应也称为反水平偏移反应(RWGS)。一氧化碳产物可以进一步转化为一系列高价值化学物质和燃料。在可以作为该反应的催化剂的土壤丰富的金属和金属氧化物材料中,基于铜的纳米催化剂已成为RWGS反应的最佳候选者之一。但是,在常规的热能驱动催化条件下,铜纳米催化剂需要相对较高的工作反应温度,并且遭受了理想的产品选择性的损失。该研究项目旨在开发一种新型的光催化方法,以实现RWGS反应的优质催化活性和所需产品的选择性。该项目还通过各种外展活动向当地小学和高中生展示了可持续的能源概念,包括俄克拉荷马州的学校的Chemkidz活动,阿巴拉契亚州(西弗吉尼亚州)(西弗吉尼亚州)的夏季科学训练营以及俄克拉荷马州立大学和西弗吉尼亚大学校园的全国实验室日活动。在传统的催化过程中,养护物品的变换量的催化剂散发出了反应量的催化剂。但是,对于设计可以将特定化学键的破裂和形成的催化剂驱动到理想的产品,仍然存在挑战。为此,该研究项目开发了一种混合等离子光催化方法。杂化等离子光催化剂由催化金属或金属氧化物包围的光吸收等离子金属组成。杂化等离子光催化方法为使用光子刺激作为额外的自由度来控制催化活性和选择性提供了独特的机会。在杂化等离子光催化剂(例如Cu Core/Cu2O壳)中,可以通过Landau阻尼介导的热电子转移途径或化学界面阻尼(CID)发生从Cu芯到Cu2O壳的电子转移。尽管对Landau阻尼介导的热电子转移途径的基本理解已经确定,但化学界面阻尼途径的设计规则仍然未知。该协作项目将针对化学接口阻尼引起的电子驱动光化学制定设计规则。 然后将这些规则应用于RWGS反应的核/壳,Cu/Cu2O和Ag/Cu2O光催化剂的设计。该研究项目还旨在通过使用光催化速率和量子效率测量值以及位于原位的女性瞬时瞬时吸收光谱光谱光谱法中,区分化学界面阻尼和Landau阻尼介导的电子转移途径。假设与Landau阻尼途径相比,化学界面阻尼途径将表现出更高的量子效率和最小的局部加热效应。此外,除了关注RWGS反应的CU/CU2O和AG/CU2O核/壳/外壳光催化剂外,该项目中制定的设计规则可以应用于其他多种混合等离子体纳米结构,用于光催化和光伏应用。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marimuthu Andiappan其他文献

Marimuthu Andiappan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marimuthu Andiappan', 18)}}的其他基金

CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
  • 批准号:
    2237454
  • 财政年份:
    2023
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Continuing Grant

相似国自然基金

AIE@CPdots发光层的可见光全波段/白光CP-EL研究
  • 批准号:
    52373188
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于Mo2CTx可见光表面等离激元的热载流子动力学定量研究
  • 批准号:
    12304047
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
降温与低发射率双层结构可见光红外兼容隐身涂层的构筑及性能研究
  • 批准号:
    52373090
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向高增益、高速、波长选择InGaN可见光探测器的缺陷抑制与增益结构研究
  • 批准号:
    62305398
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
叔膦与可见光协同催化的不对称自由基Morita-Baylis-Hillman反应研究
  • 批准号:
    22371028
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314719
  • 财政年份:
    2023
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314720
  • 财政年份:
    2023
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Visible Reflectivity of Jupiter and Saturn. Implications for Giant Planets' Thermal Evolution.
合作研究:RUI:木星和土星的可见反射率。
  • 批准号:
    2108017
  • 财政年份:
    2021
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了