Understanding and Controlling Reaction Mechanisms Under Vibrational Strong Coupling
理解和控制振动强耦合下的反应机制
基本信息
- 批准号:2101988
- 负责人:
- 金额:$ 50.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) Program in the Division of Chemistry, Wei Xiong and his group at the University of California-San Diego aim to understand the mechanisms of a specific set of chemical reactions in optical cavities. When reactants and/or products are in a cavity composed of two partial-reflective mirrors, and are highly concentrated to reach the so-called strong coupling regime, the activity and selectivity of reactions in the cavity can differ from the same reaction outside cavities. Such a phenomenon opens a new way to control chemical reactions and can profoundly impact reaction engineering through a simple optical method. However, there has been debate about the experimental observations that support the claim of cavity-modified reactions, and the molecular-level mechanisms of how the cavities modify reactions remain unclear. Dr. Xiong and his group aim to quantify the reaction in cavities and understand the underlying mechanisms through optical spectroscopy. A proper characterization of the cavity reactions and understanding of the mechanisms will lay a solid foundation for rationally designing cavities to modify chemistry. To enhance the general public's interest in chemistry, Dr. Xiong is setting up a food and chemistry YouTube channel to discuss the basic chemistry of food and cooking. Videos will feature scientists cooking food based on their own backgrounds to embrace the diverse culture in our society. While one of the purposes of this activity is to broadcast chemistry through food, something everyone can enjoy, another purpose is to show scientists in real-life settings. Observing scientists in more familiar settings can help motivate young learners to pursue STEM (science, technology, engineering and mathematics) careers and encourage their families to support such aspirations.The goal of this project is to study chemical reactions modified by molecular polaritons to gain new insight into the roles that dark modes and cooperativity play in the reactions. Vibrational strong coupling (VSC) of light and matter occurs when molecular vibrational and photon cavity modes exchange energy faster than the lifetime of both modes. Under VSC, cavity photons and molecular vibrational excitations hybridize to form molecular vibrational polaritons. Recent reports have shown several fascinating examples of how molecular potential energy landscapes and concomitant reaction pathways can be modified under VSC conditions, including modifying reaction branching ratios and enhancing or suppressing chemical reaction rates, making VSC a promising new tool to manipulate chemical reactions. However, there are several challenges in this emerging field. This project focuses on addressing three outstanding challenges by developing an alternative and more direct analytical method to quantify chemistry under VSC; quantifying the reaction performance and polariton/dark mode dynamics to understand the interplay between dark modes and polaritons and how it influences chemistry under VSC; and aiming to understand the role of energy transfer in chemistry under VSC. The main research tools include ultrafast spectroscopy and analytical instruments such as GC-MS (gas chromatography/mass spectrometry). The outcomes of this project include the development of an alternative way to quantify chemistry under VSC and better understanding of the mechanisms of chemistry under VSC. The broader impacts include new design principles for the rational design of VSC conditions to control reactions and influence the field of catalysis, pharmaceutical molecule synthesis, green chemistry, and photochemistry. The team also hosts undergraduate research students from groups that are underrepresented in science, in order to help them become familiar with graduate life and introduce them to cutting-edge research programs in an effort to broaden participation in graduate research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理 A (CSDM-A) 项目的支持下,熊伟和他在加州大学圣地亚哥分校的研究小组旨在了解一组特定化学反应的机制在光学腔中。当反应物和/或产物位于由两个部分反射镜组成的腔体中并高度集中以达到所谓的强耦合状态时,腔体中反应的活性和选择性可能与腔体外部的相同反应不同。这种现象开辟了控制化学反应的新途径,并可以通过简单的光学方法对反应工程产生深远的影响。然而,关于支持空腔修饰反应主张的实验观察结果一直存在争议,并且空腔如何修饰反应的分子水平机制仍不清楚。熊博士和他的团队旨在量化空腔中的反应,并通过光谱学了解潜在的机制。对空腔反应的正确表征和对其机理的理解将为合理设计空腔以改变化学性质奠定坚实的基础。为了提高公众对化学的兴趣,熊博士正在建立一个食品和化学YouTube频道,讨论食品和烹饪的基础化学。视频中,科学家将根据自己的背景烹饪食物,以拥抱我们社会的多元化文化。虽然这项活动的目的之一是通过食物传播化学,这是每个人都可以享受的,但另一个目的是向现实生活中的科学家展示。在更熟悉的环境中观察科学家可以帮助激励年轻学习者追求 STEM(科学、技术、工程和数学)职业,并鼓励他们的家人支持这种愿望。该项目的目标是研究分子极化子修饰的化学反应,以获得新的化学反应。深入了解暗模式和协同性在反应中所扮演的角色。当分子振动和光子腔模式交换能量的速度快于两种模式的寿命时,就会发生光和物质的振动强耦合(VSC)。在 VSC 下,腔光子和分子振动激发混合形成分子振动极化子。最近的报告展示了几个有趣的例子,说明如何在 VSC 条件下改变分子势能景观和伴随的反应途径,包括改变反应支化比和增强或抑制化学反应速率,使 VSC 成为操纵化学反应的有前途的新工具。然而,这个新兴领域也面临着一些挑战。该项目的重点是通过开发一种替代且更直接的分析方法来量化 VSC 下的化学反应,从而解决三个突出的挑战;量化反应性能和极化子/暗模式动力学,以了解暗模式和极化子之间的相互作用以及它如何影响 VSC 下的化学反应;旨在了解 VSC 下能量转移在化学中的作用。主要研究工具包括超快光谱和GC-MS(气相色谱/质谱)等分析仪器。该项目的成果包括开发一种在 VSC 下量化化学的替代方法,以及更好地理解 VSC 下的化学机制。更广泛的影响包括合理设计 VSC 条件的新设计原则,以控制反应并影响催化、药物分子合成、绿色化学和光化学领域。该团队还接待来自科学领域代表性不足的群体的本科生研究生,以帮助他们熟悉研究生生活并向他们介绍前沿研究项目,以扩大研究生研究的参与度。该奖项反映了 NSF 的法定使命通过使用基金会的智力价值和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation
- DOI:10.1126/science.add0276
- 发表时间:2022-11-18
- 期刊:
- 影响因子:56.9
- 作者:Chen, Teng-Teng;Du, Matthew;Xiong, Wei
- 通讯作者:Xiong, Wei
Molecular Vibrational Polaritons Towards Quantum Technologies
分子振动极化子走向量子技术
- DOI:10.1002/qute.202100163
- 发表时间:2022
- 期刊:
- 影响因子:4.4
- 作者:Yang, Zimo;Xiong, Wei
- 通讯作者:Xiong, Wei
Molecular Vibrational Polariton Dynamics: What Can Polaritons Do?
- DOI:10.1021/acs.accounts.2c00796
- 发表时间:2023-04-04
- 期刊:
- 影响因子:18.3
- 作者:Xiong, Wei
- 通讯作者:Xiong, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Xiong其他文献
中国現代アートとアクティビズムにおける「政治」の多義性 :ポスト文革期の前衛芸術グループ「星星画会」を事例に
中国当代艺术中“政治”的模糊性与行动主义:以文革后先锋艺术团体“星星画社”为例
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Titinunt Kitrungrotsakul;Xian-Hua Han;Yutaro Iwamoto;Lanfen Lin;Wei Xiong;Yen-Wei Chen;陳 海茵;陳 海茵 - 通讯作者:
陳 海茵
How Art Spaces in Beijing Changed Its Function after 2008 Olympic Games : The gentrification and Crisis of Art Villages and district
2008年奥运会后北京艺术空间功能的转变:艺术村区的士绅化与危机
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Titinunt Kitrungrotsakul;Xian-Hua Han;Yutaro Iwamoto;Lanfen Lin;Wei Xiong;Yen-Wei Chen;陳 海茵;陳 海茵;Haiyin Chen;陳 海茵;Chen Haiyin - 通讯作者:
Chen Haiyin
Colorectal cancer outcomes among Hispanic/Latino patients in the United States: a scoping review protocol.
美国西班牙裔/拉丁裔患者的结直肠癌结果:范围界定审查方案。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Joel Sanchez;J. E. Quino;Wei Xiong;Mariana C. Stern - 通讯作者:
Mariana C. Stern
Total synthesis of mangiferin, homomangiferin, and neomangiferin
芒果苷、高芒果苷、新芒果苷的全合成
- DOI:
10.1039/c6ob01622g - 发表时间:
2016 - 期刊:
- 影响因子:3.2
- 作者:
Wei Xiong;Liang Danlin;Wang Qing;Meng Xiangbao;Li Zhongjun - 通讯作者:
Li Zhongjun
Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly.
通过超快激光加工和自组装获得的纳米结构导电水凝胶。
- DOI:
10.1039/c9nr01230c - 发表时间:
2019-05 - 期刊:
- 影响因子:6.7
- 作者:
Yufeng Tao;Chunsan Deng;Song Cai;Wei Xiong;Chengyiran Wei;Jingwei Liu - 通讯作者:
Jingwei Liu
Wei Xiong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Xiong', 18)}}的其他基金
Conference: Strong Coupling with Organic Molecules (SCOM-23)
会议:与有机分子的强耦合(SCOM-23)
- 批准号:
2327457 - 财政年份:2023
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
CAREER: Unraveling Fundamental Mechanisms Governing Grain Refinement in Complex Concentrated Alloys Made by Additive Manufacturing Towards Strong and Ductile Structures
职业:揭示增材制造复杂浓缩合金晶粒细化的基本机制,以获得坚固且延展的结构
- 批准号:
2047218 - 财政年份:2021
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
- 批准号:
2012661 - 财政年份:2020
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
CAREER: Coherences and Nonlinear Interactions in Molecular Infrared Polaritons
职业:分子红外极化子的相干性和非线性相互作用
- 批准号:
1848215 - 财政年份:2019
- 资助金额:
$ 50.87万 - 项目类别:
Continuing Grant
MRI: Development of a 100 kHz, Ultrafast Interfacial-Specific Two-Dimensional Vibrational Spectromicroscope
MRI:开发 100 kHz、超快界面特定二维振动光谱显微镜
- 批准号:
1828666 - 财政年份:2018
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
Time-Resolved, Electric-Field-Induced Vibrational Spectroscopy for Molecular Conformation Studies
用于分子构象研究的时间分辨电场诱导振动光谱
- 批准号:
1808111 - 财政年份:2018
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
Workshop/Collaborative Research: Accelerating NSF Research in Additive Manufacturing toward Industrial Applications; Pittsburgh, Pennsylvania; August 17-18, 2017
研讨会/合作研究:加速 NSF 增材制造研究走向工业应用;
- 批准号:
1743007 - 财政年份:2017
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
相似国自然基金
高效亚稳相二维IrO2电催化剂的可控制备及其在氧气析出反应中的应用
- 批准号:52301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不饱和烃氮化反应的选择性控制及其在结构多样性杂环合成中的应用
- 批准号:22371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于硫盐的双β-消除反应控制型可逆环化抗菌肽研究
- 批准号:22307049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高放废液玻璃固化过程中黄相的控制及其在冷帽的反应机理研究
- 批准号:12375316
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于超声微泡和水凝胶时空控制免疫反应的衰老疫苗策略及其防治动脉粥样硬化的研究
- 批准号:82302203
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Study of a waste water decomposition mechanism for the Ball lightning like discharge method controlling contact time duration and reaction areas
控制接触时间和反应面积的球状闪电放电法废水分解机理研究
- 批准号:
21K04017 - 财政年份:2021
- 资助金额:
$ 50.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding and Controlling Amine-Hybrid Perovskite Vapor-Solid Reaction at Nanoscale
理解和控制纳米级胺杂化钙钛矿气固反应
- 批准号:
1917462 - 财政年份:2019
- 资助金额:
$ 50.87万 - 项目类别:
Standard Grant
Linking diffusion and reaction - Understanding and controlling transport processes to optimize rates and selectivities for (micro-)porous catalysts
连接扩散和反应 - 了解和控制传输过程以优化(微)多孔催化剂的速率和选择性
- 批准号:
313864573 - 财政年份:2016
- 资助金额:
$ 50.87万 - 项目类别:
Research Grants
Understanding and Controlling of Concentration Fluctuation and Heterogeneity in Polymer Reaction System by Spatio-temporal Mapping Analysis
通过时空映射分析理解和控制聚合物反应体系中的浓度波动和非均质性
- 批准号:
15H05496 - 财政年份:2015
- 资助金额:
$ 50.87万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Understanding and Controlling Nanoscale Molecular Metal Oxides for Responsive Reaction Systems
了解和控制响应反应系统的纳米级分子金属氧化物
- 批准号:
EP/F023456/2 - 财政年份:2010
- 资助金额:
$ 50.87万 - 项目类别:
Research Grant