Using Natural Language Processing to Inform Science Instruction
使用自然语言处理为科学教学提供信息
基本信息
- 批准号:2101669
- 负责人:
- 金额:$ 224.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers. This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通常,由于语言和文化障碍,中学科学课程不会受益于代表性不足的学生的参与。该项目利用语言来帮助学生形成自己的想法,并在科学课堂上追求更深入的理解。这项工作继续在加利福尼亚大学,伯克利大学,教育测试服务以及来自六所中学的科学教师和专业人士之间建立了合作伙伴关系,其中包括来自各种种族,种族和语言群体的学生,他们的文化经验可能会被忽略在科学教学中。该合作伙伴关系将开发一项全面的研究计划,以开发和测试技术,该计划将使学生能够利用自己的想法作为加深科学理解的起点。研究人员将使用一种检测学生观念的技术,这些技术超出了学生的一般知识水平,以适应学生对科学主题的文化和语言理解。该合作伙伴关系利用一个基于Web的平台来实现由教师设计的自适应指导,这些指导和同行互动具有功能。此外,该平台具有教师工具,可以检测学生何时需要更多帮助并提醒老师。使用该技术的教师将能够跟踪和回应个别学生的想法,尤其是从不经常因语言和文化障碍而参加的学生。 该项目开发了基于AI的技术,以帮助科学教师增加对学生科学学习的影响。该技术的目的是对学生的最初想法和适应性指导进行准确的分析,使每个学生开始重新考虑自己的想法并追求更深入的理解。自动评分中的当前方法主要集中于检测在测试问题上的错误回答并估算学生解释中的总体知识水平。该项目利用自然语言处理的进步(NLP)来确定学生解释开放式科学问题的特定思想。调查人员将开展一项全面的研究计划,该计划将新的基于NLP的AI方法与自适应指导分析学生的想法,结合使用,该方法将使学生能够利用自己的想法作为提高科学理解的起点。为了评估思想检测过程,研究人员将进行研究,以研究教室中思想检测的准确性和影响。为了评估指导,研究人员将进行比较研究,将学生随机分配给条件,以确定最有希望的自适应指导设计。所有材料均可使用开放平台创作工具进行自定义。 Discovery Research Prek-12计划(DRK-12)试图通过研究和开发创新资源,模型和工具来显着增强PreK-12学生和教师的科学,技术,工程和数学(STEM)的学习和教学。 DRK-12计划中的项目基于STEM教育和先前的研发工作的基础研究,为拟议项目提供了理论和经验的理由。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing an Adaptive Dialogue to Promote Science Understanding
设计适应性对话以促进科学理解
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gerard, L.;Bichler, S.;Bradford, A.;Linn, M. C.;Steimel, K.;Riordan, B.
- 通讯作者:Riordan, B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcia Linn其他文献
Marcia Linn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcia Linn', 18)}}的其他基金
Collaborative Research: Supporting Teachers in Responsive Instruction for Developing Expertise in Science
合作研究:支持教师进行响应式教学以发展科学专业知识
- 批准号:
1813713 - 财政年份:2018
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
INT: Project Learning with Automated, Networked Supports (PLANS)
INT:通过自动化、网络化支持进行项目学习 (PLANS)
- 批准号:
1451604 - 财政年份:2015
- 资助金额:
$ 224.75万 - 项目类别:
Standard Grant
GRIDS: Graphing Research on Inquiry with Data in Science
网格:科学数据探究的图形研究
- 批准号:
1418423 - 财政年份:2014
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
CLASS: Continuous Learning and Automated Scoring in Science
课程:科学中的持续学习和自动评分
- 批准号:
1119670 - 财政年份:2011
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
Visualizing to Integrate Science Understanding for All Learners (VISUAL)
可视化以整合所有学习者的科学理解(VISUAL)
- 批准号:
0918743 - 财政年份:2009
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
R&D: Cumulative Learning using Embedded Assessment Results (CLEAR)
右
- 批准号:
0822388 - 财政年份:2008
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
Mentored and Online Development of Educational Leaders for Science (MODELS)
科学教育领导者的指导和在线发展(模型)
- 批准号:
0455877 - 财政年份:2005
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
Helping districts respond to new science assessments--A partnership model for integrating technology, professional development and curriculum planning
帮助地区应对新的科学评估——整合技术、专业发展和课程规划的合作伙伴模式
- 批准号:
0311835 - 财政年份:2003
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
The Educational Accelerator: Technology-Enhanced Learning in Science (TELS)
教育加速器:科学技术增强学习 (TELS)
- 批准号:
0334199 - 财政年份:2003
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
Supporting Teachers and Encouraging Lifelong Learning: A Web-Based Integrated Science Environment (WISE)
支持教师并鼓励终身学习:基于网络的综合科学环境 (WISE)
- 批准号:
0128062 - 财政年份:2002
- 资助金额:
$ 224.75万 - 项目类别:
Continuing Grant
相似国自然基金
自然语言生成的无监督评价方法研究
- 批准号:62306160
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
因果机制引导的自然语言处理深度学习建模研究
- 批准号:62336006
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
基于多模态感知与自然语言理解的机器人自主任务规划方法研究
- 批准号:62373129
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自然语言驱动的建筑物室内外一体化矢量模型重建方法
- 批准号:42371457
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于自然语言查询的视觉目标跟踪方法研究
- 批准号:62306095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 224.75万 - 项目类别:
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
- 批准号:
10667807 - 财政年份:2023
- 资助金额:
$ 224.75万 - 项目类别:
Multitask Image-Natural Language Correspondence Model Development using Large-Scale Medical Image Dataset
使用大规模医学图像数据集开发多任务图像-自然语言对应模型
- 批准号:
23K17229 - 财政年份:2023
- 资助金额:
$ 224.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An automated, fully auditable company peer comparison platform, using natural language processing and AI to replace a currently manual process
一个自动化、完全可审核的公司同行比较平台,使用自然语言处理和人工智能来取代当前的手动流程
- 批准号:
10060782 - 财政年份:2023
- 资助金额:
$ 224.75万 - 项目类别:
Collaborative R&D
Meeting young people where they are: Using technology to promote resilience among child maltreatment victims
与年轻人见面:利用技术提高虐待儿童受害者的复原力
- 批准号:
10664529 - 财政年份:2023
- 资助金额:
$ 224.75万 - 项目类别: