EAGER: Minimal 3D Modeling Methodology

EAGER:最小 3D 建模方法

基本信息

  • 批准号:
    2032770
  • 负责人:
  • 金额:
    $ 6.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Modeling and design are core components of computer graphics and computer vision research and applications. Traditional modeling consists of having the designer provide either a detailed (digital) specification of the desired virtual object or sufficient photographs of a physical object to enable a multi-view stereo reconstruction, although modern GUI-based tools can help reduce to a certain extent the number of photographs required. Digital sketching tools provide an alternative mechanism for modeling objects, but even though some of these try to assist the user by completing partial sketches a notable effort is still required to achieve detailed results. This project will explore a modeling methodology that addresses the following question: What is the least we can design and still obtain a sufficiently expressive system? At one extreme digital modeling tools support high expressivity but require high design effort, while at the other extreme providing a fixed set of model templates incurs very low design effort but results in low model expressivity as well. Some recent efforts, such as the PI's sketch-to-procedural-modeling work, fall somewhere in the middle. The goal of the current research is to determine the point of optimum balance between design and expressivity, that is just enough design effort to produce a sufficiently expressive model. The focus of this multi-disciplinary work will be on computational archaeology, an interesting application where only fragmented information is available, hence success of the approach in this domain will imply broad generalizability of project outcomes to other areas as well.It has been established in the literature that only a fraction of what we perceive suffices for a person to create a mental 3D representation of an object. With this observation in mind, the project will build upon and extend the PI's existing photograph-to-3D modeling tool by adding new minimalist machine learning underpinnings applied to urban and archaeological modeling and design, to build software that requests just enough input from the user and is able to produce 3D models of sufficient completeness for the intended goal. Various ways of degrading the input detail and analyzing how the model output is affected will be explored to identify the most promising for retention and improvement of robustness. About a terabyte of imagery and point cloud data from two archaeological sites of ancient settlements on the islands of Dana and Bogsak along the southern coast of Turkey will serve as a testbed. These islands have structures built using material from local stone quarries and are a main type of urban landscape to survive from antiquity but are difficult to study due to size, complexity, terrain, and incompleteness. Nonetheless, aerial drone-based imagery and LIDAR are possible. The research will investigate how much must be specified during design to differentiate among the possible forms and their parameters to express a desired output.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建模和设计是计算机图形学和计算机视觉研究和应用的核心组成部分。 传统建模包括让设计者提供所需虚拟对象的详细(数字)规格或物理对象的足够照片以实现多视图立体重建,尽管现代基于 GUI 的工具可以在一定程度上帮助减少所需照片数量。 数字草图工具提供了一种用于建模对象的替代机制,但即使其中一些工具试图通过完成部分草图来帮助用户,仍然需要付出巨大的努力才能获得详细的结果。 该项目将探索一种解决以下问题的建模方法:我们至少可以设计什么并仍然获得足够表达的系统? 在一个极端,数字建模工具支持高表现力,但需要大量的设计工作,而在另一个极端,提供一组固定的模型模板会导致非常低的设计工作,但也会导致低模型表现力。 最近的一些工作,例如 PI 的草图到程序建模工作,处于中间位置。 当前研究的目标是确定设计和表现力之间的最佳平衡点,即足够的设计努力来产生足够表现力的模型。这项多学科工作的重点将是计算考古学,这是一种有趣的应用,其中仅提供碎片信息,因此该方法在该领域的成功将意味着项目成果也可以广泛推广到其他领域。文献表明,只有我们感知到的一小部分就足以让一个人在心理上创建一个物体的 3D 表征。 考虑到这一观察结果,该项目将通过添加应用于城市和考古建模和设计的新的极简主义机器学习基础,建立并扩展 PI 现有的照片到 3D 建模工具,以构建只需要用户提供足够输入的软件并能够为预期目标生成足够完整的 3D 模型。 将探索降低输入细节并分析模型输出如何受到影响的各种方法,以确定最有希望保留和提高鲁棒性的方法。 来自土耳其南部海岸达纳岛和博格萨克岛两个古代定居点考古遗址的约 1TB 图像和点云数据将作为测试平台。 这些岛屿的结构采用当地采石场的材料建造,是古代遗留下来的主要城市景观类型,但由于规模、复杂性、地形和不完整性而难以研究。 尽管如此,基于无人机的空中图像和激光雷达是可能的。 该研究将调查在设计过程中必须指定多少内容,以区分可能的形式及其参数,以表达所需的输出。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Urban tree generator: spatio-temporal and generative deep learning for urban tree localization and modeling
城市树木生成器:用于城市树木定位和建模的时空和生成深度学习
  • DOI:
    10.1007/s00371-022-02526-x
  • 发表时间:
    2022-06-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Firoze;Bedrich Benes;Daniel G. Aliaga
  • 通讯作者:
    Daniel G. Aliaga
Synthesis and Completion of Facades from Satellite Imagery
卫星图像的外立面合成和完成
Automatic Deep Inference of Procedural Cities from Global-scale Spatial Data
从全球规模的空间数据自动深度推断程序城市
RFCNet: Enhancing urban segmentation using regularization, fusion, and completion
RFCNet:使用正则化、融合和补全增强城市分割
  • DOI:
    10.1016/j.cviu.2022.103435
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaowei Zhang;Daniel G. Aliaga
  • 通讯作者:
    Daniel G. Aliaga
Guided pluralistic building contour completion
引导多元建筑轮廓完成
  • DOI:
    10.1007/s00371-022-02532-z
  • 发表时间:
    2022-06-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaowei Zhang;Wufei Ma;G. Varinlioǧlu;Nick Rauh;Liu He;Daniel G. Aliaga
  • 通讯作者:
    Daniel G. Aliaga
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Aliaga其他文献

Impact of Urban Representation on Simulation of Hurricane Rainfall
城市表征对飓风降雨模拟的影响
  • DOI:
    10.1029/2023gl104078
  • 发表时间:
    2023-11-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Pratiman Patel;Kumar Ankur;S. Jamshidi;Alka Tiwari;R. Nadimpalli;N. Busireddy;Samira Safaee;K. Osuri;S. Karmakar;Subimal Ghosh;Daniel Aliaga;James Smith;Frank Marks;Zong‐Liang Yang;D. Niyogi
  • 通讯作者:
    D. Niyogi

Daniel Aliaga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Aliaga', 18)}}的其他基金

III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery
III:媒介:协作研究:城市和考古恢复的深度生成模型
  • 批准号:
    2107096
  • 财政年份:
    2021
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Elements: Data: U-Cube: A Cyberinfrastructure for Unified and Ubiquitous Urban Canopy Parameterization
元素:数据:U-Cube:统一且无处不在的城市冠层参数化的网络基础设施
  • 批准号:
    1835739
  • 财政年份:
    2019
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
CHS: Small: Functional Proceduralization of 3D Geometric Models
CHS:小型:3D 几何模型的功能程序化
  • 批准号:
    1816514
  • 财政年份:
    2018
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: A Heterogeneous Inference Framework for 3D Modeling and Rendering of Sites
CGV:媒介:协作研究:用于站点 3D 建模和渲染的异构推理框架
  • 批准号:
    1302172
  • 财政年份:
    2013
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
CDS&E: STRONG Cities - Simulation Technologies for the Realization of Next Generation Cities
CDS
  • 批准号:
    1250232
  • 财政年份:
    2012
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Behavioral, Geometrical and Graphical Modeling to Simulate and Visualize Urban Areas
III:媒介:协作研究:集成行为、几何和图形建模来模拟和可视化城市地区
  • 批准号:
    0964302
  • 财政年份:
    2010
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
RI: Small: A Computational Framework for Marking Physical Objects against Counterfeiting and Tampering
RI:小型:用于标记物理对象防伪和篡改的计算框架
  • 批准号:
    0913875
  • 财政年份:
    2009
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
MSPA-MCS: 3D Scene Digitization - A Novel Invariant Approach for Large-Scale Environment Capture
MSPA-MCS:3D 场景数字化 - 一种用于大规模环境捕获的新颖的不变方法
  • 批准号:
    0434398
  • 财政年份:
    2004
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Einstein-Bianchi 方程及 Hilbert 复形中相关问题的非标准一阶系统最小二乘有限元方法研究
  • 批准号:
    12371371
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
张量偏最小二乘的若干理论研究及其应用
  • 批准号:
    12301377
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向角度变化反射系数的快速最小二乘高斯束偏移成像方法研究
  • 批准号:
    42374166
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
不定最小二乘问题的数值解法及其稳定性分析
  • 批准号:
    12361082
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
面积最小曲面若干问题的研究
  • 批准号:
    12301068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    RGPIN-2022-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    RGPIN-2022-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    DGECR-2022-00278
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Discovery Launch Supplement
Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    DGECR-2022-00278
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Discovery Launch Supplement
Study on user position detection method using unmanned aerial vehicles under practical communication environment
实际通信环境下无人机用户位置检测方法研究
  • 批准号:
    19K04380
  • 财政年份:
    2019
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了