Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
基本信息
- 批准号:2101466
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research supported by this grant lies at the crossroads of mathematics and physics. It involves a mix of pursuits, including the development of new tools and the solution of open problems. A main theme is understanding complicated systems in terms of simple building blocks. For example, a primary aim is to describe global phase spaces in terms of a concrete list of local combinatorial models. This offers a new language to capture intricate phenomena through an elementary syntax. The methods are inspired by singularity theory, where symmetry-breaking often reveals hidden structure. In addition to original research, a broad goal of the project is the education of students in the new frontiers of rapidly developing fields. There will also be ample opportunities for outreach across fields and for increased public engagement with mathematics. The research centers around symplectic manifolds, the modern descendants of classical phase spaces, and their quantum invariants. More specifically, the projects focus on symplectic manifolds arising in algebraic geometry (Kahler manifolds) and gauge theory (moduli of bundles and connections). Specific directions focus on Lagrangian singularities and skeleta of Weinstein manifolds, microlocal sheaves in mirror symmetry, and the Betti Geometric Langlands correspondence. The main goals include a combinatorial approach to Weinstein manifolds, foundations of microlocal sheaves in homological mirror symmetry, and a Verlinde formula for automorphic categories. The methods span a range of techniques in symplectic geometry, algebraic topology, and gauge theory. They connect with central pursuits in supersymmetric gauge theory, in particular higher structures coming from four-dimensional topological field theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项赠款支持的研究在于数学和物理学的十字路口。它涉及各种追求,包括开发新工具和解决开放问题的解决方案。一个主要主题是从简单的构建块来理解复杂的系统。例如,主要目的是用局部组合模型的具体列表来描述全球相位空间。这提供了一种新的语言,可以通过基本语法捕获复杂的现象。这些方法是受奇异理论的启发,在这种理论中,对称性破裂通常揭示了隐藏的结构。除原始研究外,该项目的一个广泛目标是在快速发展领域的新领域对学生的教育。在整个领域的外展和公众参与数学的参与也将有足够的机会。 研究以符号歧管,古典相位空间的现代后代及其量子不变性为中心。更具体地说,这些项目着重于代数几何形状(Kahler歧管)和仪表理论(捆绑和连接模量)中产生的符合歧管。特定方向着重于温斯坦歧管的拉格朗日奇异性和骨骼,镜子对称性中的微局部滑轮和贝蒂几何兰兰兹对应关系。主要目标包括用于Weinstein歧管的组合方法,同源镜对称性中的微局部滑轮的基础以及用于自代化类别的Verlinde公式。这些方法涵盖了符号几何,代数拓扑和量规理论中的一系列技术。他们与超对称规格理论中的中心追求联系,特别是来自四维拓扑领域理论的更高结构。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
David Nadler的其他基金
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:24011782401178
- 财政年份:2024
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
- 批准号:18023731802373
- 财政年份:2018
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Continuing GrantContinuing Grant
Microlocal Geometry in Gauge Theory
规范理论中的微局域几何
- 批准号:15021781502178
- 财政年份:2015
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
- 批准号:13429481342948
- 财政年份:2012
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
- 批准号:13192871319287
- 财政年份:2012
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
- 批准号:12013191201319
- 财政年份:2012
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
- 批准号:11602271160227
- 财政年份:2012
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
Representation theory via topological field theory
通过拓扑场论的表示论
- 批准号:09011140901114
- 财政年份:2009
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
Perverse Sheaves in Representation Theory
表示论中的反常滑轮
- 批准号:06009090600909
- 财政年份:2006
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Standard GrantStandard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
- 批准号:02024800202480
- 财政年份:2002
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Fellowship AwardFellowship Award
相似国自然基金
基于跨物种多组学揭示骨骼肌衰老过程中的转录后调控缺陷和相关功能基因的研究
- 批准号:32301238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多目标优化的下肢外骨骼拟人步态建模与学习算法研究
- 批准号:62303092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
地舒单抗诱导巨噬细胞表型转化在老年肌少症骨骼肌纤维化中的作用及机制研究
- 批准号:82301775
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Myostatin-Akirin1介导的肌卫星细胞功能探明肾衰营养胶囊对CKD-PEW骨骼肌萎缩的作用机制
- 批准号:82305168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
傣药芽命几及单体异鼠李素调节蛋白合成-分解代谢治疗骨骼肌萎缩的作用及机制研究
- 批准号:82305431
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
- 批准号:19040741904074
- 财政年份:2019
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Continuing GrantContinuing Grant
Systematic study on the osteocyte network formation and their mechanical responsibility
骨细胞网络形成及其机械作用的系统研究
- 批准号:1720906417209064
- 财政年份:2005
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Grant-in-Aid for Scientific Research (A)Grant-in-Aid for Scientific Research (A)
A Study on the Relapse change after orthodontic Treatment in skeleta class III with Reversed Occlusion.
Ⅲ类骨骼反向咬合正畸治疗后复发变化的研究。
- 批准号:0667206606672066
- 财政年份:1994
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Grant-in-Aid for General Scientific Research (C)Grant-in-Aid for General Scientific Research (C)
抗脳腫瘍化学療法剤の作用発現に関する基礎的研究
抗脑肿瘤化疗药物作用的基础研究
- 批准号:6157070761570707
- 财政年份:1986
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Grant-in-Aid for General Scientific Research (C)Grant-in-Aid for General Scientific Research (C)
細胞骨骼結合性糖脂質の解析
细胞骨结合糖脂的分析
- 批准号:5848044558480445
- 财政年份:1983
- 资助金额:$ 40.5万$ 40.5万
- 项目类别:Grant-in-Aid for General Scientific Research (B)Grant-in-Aid for General Scientific Research (B)