RAPID: Algorithms and Heuristics for Remote Food Delivery under Social Distancing Constraints

RAPID:社交距离约束下远程食品配送的算法和启发式

基本信息

  • 批准号:
    2032262
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This goal of this project is to optimize processes for remote delivery of meals to persons in need. The COVID-19 pandemic has fundamentally disrupted processes of food delivery to economically depressed and vulnerable segments of the US population. With the closing of schools and the advent of social distancing practices, over 13 million low-income students who have historically relied on their school to provide daily meals are now without important nutritional support, and centralized school summer meal distribution programs are no longer viable. Similarly, low-income adults and seniors that depend on centralized distribution of meals at shelters and food banks are now being forced to cope with virus mitigation procedures that severely limit their access. Both short and long term solutions to food security for all in this new normal depend on greater reliance on remote food delivery, and although vehicle routing and pickup/delivery problems have been studied for close to 50 years, the constraints imposed by contemporary public health and social distancing concerns present new optimization challenges. This research will contribute new problem formulations and solutions to these important classes of remote food delivery problems, and through existing relationships with the Allegheny County Department of Human Services, Southwestern Pennsylvania United Way, Allies for Children and the Greater Pittsburgh Food Bank, the project will apply research results to inform their ongoing pilot food delivery efforts. More broadly, these results will stimulate future research on these problems and influence remote food delivery problems nationwide.To realize these results and impact, this project aims to develop new algorithms and heuristics that address the unique constraints and objectives presented by these geographically-dispersed food delivery problems, to provide a theoretical basis for more efficient operational practice. With respect to school bus student meal delivery, algorithms and heuristics for solving several problems will be developed and analyzed. First, the project will consider the coupled problem of assigning stops to students requiring meals and generating efficient routes to accommodate these students within a global meal time window, while enforcing social distance constraints on number of students that can be assigned to any one bus stop. Second, the research will investigate an extended formulation that additionally allows the use of smaller passenger vehicles or vans, to better service students that have difficult access to bus stops and/or long walk times. To ensure relevance, the project will utilize demand and bus route data from selected school districts in Allegheny County, PA to evaluate performance. Finally, with respect to remote distribution of food to low-income seniors, the algorithms and heuristics developed for student meal delivery will be extended and adapted to this more capacity constrained setting, where food must be moved exclusively in smaller volunteer passenger vehicles. Data obtained from the Greater Food Bank of Pittsburgh will be used to evaluate these extended research results. All data sets used and solutions results obtained will be made available to stimulate future research in this area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是优化向有需要的人远程送餐的流程。 COVID-19 大流行从根本上扰乱了向经济萧条和美国弱势群体提供食品的过程。随着学校关闭和社交距离措施的出现,超过 1300 万过去依赖学校提供日常膳食的低收入学生现在失去了重要的营养支持,集中学校夏季膳食分配计划不再可行。同样,依赖庇护所和食品银行集中分发膳食的低收入成年人和老年人现在被迫应对严重限制他们获取食物的病毒缓解程序。在这种新常态下,所有人粮食安全的短期和长期解决方案都取决于对远程粮食配送的更多依赖,尽管车辆路线和取货/送货问题已被研究了近 50 年,但当代公共卫生和公共健康所带来的限制社交距离问题带来了新的优化挑战。这项研究将为这些重要的远程食品配送问题提供新的问题表述和解决方案,并通过与阿勒格尼县人类服务部、宾夕法尼亚州西南部联合之路、儿童联盟和大匹兹堡食品银行的现有关系,该项目将应用研究结果为正在进行的食品配送试点工作提供信息。更广泛地说,这些结果将刺激未来对这些问题的研究,并影响全国范围内的远程食品配送问题。为了实现这些结果和影响,该项目旨在开发新的算法和启发法,以解决这些地理分散的食品所带来的独特约束和目标交付问题,为更高效的操作实践提供理论依据。对于校车学生送餐,将开发和分析用于解决几个问题的算法和启发式方法。首先,该项目将考虑为需要用餐的学生分配停靠站并生成有效路线以在全球用餐时间窗口内容纳这些学生的耦合问题,同时对可以分配到任何一个公交车站的学生数量实施社交距离限制。其次,该研究将研究一种扩展方案,允许使用小型客车或货车,以更好地为难以到达公交车站和/或步行时间较长的学生提供服务。为了确保相关性,该项目将利用宾夕法尼亚州阿勒格尼县选定学区的需求和公交路线数据来评估绩效。最后,关于向低收入老年人远程分发食物,为学生送餐开发的算法和启发法将得到扩展并适应这种容量更有限的环境,在这种环境中,食物必须专门用较小的志愿客车运输。从匹兹堡大食品银行获得的数据将用于评估这些扩展研究结果。使用的所有数据集和获得的解决方案结果将用于刺激该领域的未来研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Smith其他文献

AN EVALUATION OF FEEDYARD MANAGEMENT STRATEGIES TO OPTIMIZE CATTLE FEEDING PERFORMANCE AND ANIMAL HEALTH A Dissertation by AMANDA LYN FULLER
优化牛饲养性能和动物健康的饲养场管理策略评估 AMANDA LYN FULLER 的论文
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hales;Stephen Smith
  • 通讯作者:
    Stephen Smith
Cell-type–specific neuromodulation guides synaptic credit assignment in a spiking neural network
细胞类型特异性神经调节指导尖峰神经网络中的突触信用分配
TEMPORAL TRENDS IN SSR ALLELE FREQUENCIES ASSOCIATED WITH LONG-TERM SELECTION FOR YIELD OF MAIZE 1
与玉米 1 产量长期选择相关的 SSR 等位基因频率的时间趋势
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    L. Feng;S. Sebastian;Stephen Smith;M. Cooper
  • 通讯作者:
    M. Cooper
Potential Renewable Bioenergy Production from Canadian Agriculture
加拿大农业潜在的可再生生物能源生产
  • DOI:
    10.3384/ecp110572485
  • 发表时间:
    2011-11-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Liu;B. McConkey;Stephen Smith;B. Mcgregor;T. Huffman;S. Kulshreshtha;Hong Wang
  • 通讯作者:
    Hong Wang
TO FACILITATE DISCRIMINATION OF PICTURE CARDS DURING COMMUNICATION TRAINING
促进沟通训练期间图片卡的辨别
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David M. Wilson;Scott Miller;Stephen Smith;B. Iwata
  • 通讯作者:
    B. Iwata

Stephen Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Smith', 18)}}的其他基金

Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating fossils, genomics, and machine learning to reveal drivers of Cretaceous innovations in flowering plants
IntBIO 协作研究:整合化石、基因组学和机器学习,揭示白垩纪开花植物创新的驱动因素
  • 批准号:
    2217116
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: BEE: Bridging the ecology and evolution of East African Acacias across time and space: genomics, ecosystem, and diversification
合作研究:BEE:跨越时间和空间连接东非金合欢的生态和进化:基因组学、生态系统和多样化
  • 批准号:
    2106070
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NSFDEB-NERC: Collaborative research: Plant chemistry and its impact on diversification and habitat of plants adapted to extreme environments
NSFDEB-NERC:合作研究:植物化学及其对适应极端环境的植物多样化和栖息地的影响
  • 批准号:
    1938969
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Temperate radiations and tropical dominance: the diversification and evolution of the plant clade Ericales
合作研究:温带辐射和热带优势:植物分支杜鹃花目的多样化和进化
  • 批准号:
    1917146
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CIBR: Collaborative Research: Integrating data communities with BiotaPhy: a computational platform for data-intensive biodiversity research and training
CIBR:协作研究:将数据社区与 BiotaPhy 相集成:用于数据密集型生物多样性研究和培训的计算平台
  • 批准号:
    1930030
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Computational Analysis of Transcription and Alternative Splicing Events in Squamous Cell Cancer.
鳞状细胞癌转录和选择性剪接事件的计算分析。
  • 批准号:
    MR/R001146/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
IIS-RI: ICAPS 2016 Doctoral Consortium Travel Awards
IIS-RI:ICAPS 2016 博士联盟旅行奖
  • 批准号:
    1630144
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Connecting resources to enable large-scale biodiversity analyses.
合作研究:ABI 创新:连接资源以实现大规模生物多样性分析。
  • 批准号:
    1458466
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: School Segregation and Resegregation: Using Case Studies and Public Polls to Understand Citizen Attitudes
合作研究:学校隔离和重新隔离:利用案例研究和公众民意调查来了解公民的态度
  • 批准号:
    1527762
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

学习型超启发式算法求解节能分布式生产与运输集成调度问题研究
  • 批准号:
    62173169
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
求解单人组合游戏问题的模式库启发式搜索算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于元启发式多目标粒子群优化的集成智能呼吸信号预测算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多任务优化的超启发式演化算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式阻塞流水车间调度超启发式算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
  • 批准号:
    10299634
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
  • 批准号:
    10416058
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
  • 批准号:
    10417829
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
  • 批准号:
    10669029
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
  • 批准号:
    9816658
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了