Collaborative Research: Correlating Device Performance and Interfacial Properties for Weyl Spintronics

合作研究:关联 Weyl 自旋电子学的器件性能和界面特性

基本信息

  • 批准号:
    2031871
  • 负责人:
  • 金额:
    $ 29.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This grant supports research into understanding new mechanisms by which electrical currents can be used to switch the magnetic orientation of thin magnetic layers in devices for data processing and storage. The use of current pulses to alter magnetism is central to the operating principles of a variety of electronic and spintronic devices. However, new materials systems are needed to reduce the power consumption required for magnetic switching and to enable future device scaling. This award supports fundamental research to identify quantum materials known as Weyl semimetals that enable significant improvements in the efficiency of current-induced magnetic switching. The project will characterize a variety of Weyl semimetals for use in magnetic devices with emphasis on understanding how the switching metrics are influenced by the interfacial properties between the Weyl semimetal and the magnetic layer. The project will also identify how Weyl semimetals can be used to enable switching of perpendicular magnets to facilitate emerging device concepts. The insights into how new quantum materials can reduce power consumption in electronic and magnetic devices may lead to new advances in electronics and computing devices, providing broad societal benefit. The students’ research training enabled by this project will serve to advance the U.S. economic interests by providing them with the experimental skill set needed to contribute to the technological sector.This collaborative project will lay the groundwork for low-power spintronic devices through a series of research activities aimed at providing a detailed understanding of spin-orbit torques generated by Weyl semimetals. The charge-to-spin conversion process will be thoroughly characterized at a series of interfaces between Weyl semimetals and ferromagnetic metals to quantify torque efficiencies. The interfacial properties of these same structures will be characterized using resonant x-ray reflectivity, a technique that allows for both the elemental concentration and magnetization to be determined as a function of depth across the interfaces. The correlations between spin-orbit torque efficiency and the composition and magnetic properties of the interfaces will elucidate the roles of intrinsic (Weyl physics) and extrinsic (non-idealities at the interfaces) contributions to the torques. These activities will yield a thorough understanding of spin-orbit torques across real interfaces in device-based structures fabricated using industry-relevant deposition processes. The research will also identify novel spin-orbit torques, including those associated with an out-of-plane spin polarization, enabled by the unique properties of Weyl semimetals and quantify torque metrics relevant for non-volatile magnetic memory devices and thermally driven stochastic oscillators, where the magnetization of the free magnetic layer is controlled via spin-orbit torques. Through these research activities, this project will advance progress toward employing Weyl semimetals in emerging electronic and spintronic device architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该拨款支持研究了解新机制,通过该机制可以使用电流来切换数据处理和存储设备中薄磁性层的磁性方向。使用电流脉冲来改变磁性是各种操作原理的核心。然而,需要新的材料系统来降低磁开关所需的功耗并实现未来的器件缩放,该奖项支持识别被称为韦尔半金属的量子材料的基础研究,这些材料可以显着提高电流效率。该项目将表征感应磁开关。用于磁性器件的各种韦尔半金属,重点是了解开关指标如何受到韦尔半金属和磁性层之间的界面特性的影响。该项目还将确定如何使用韦尔半金属来实现垂直磁体的开关。促进新兴设备概念的发展。对新型量子材料如何降低电子和磁性设备功耗的见解可能会带来电子和计算设备的新进步,从而为学生提供广泛的社会效益。推进通过为他们提供为技术领域做出贡献所需的实验技能集来实现美国的经济利益。该合作项目将通过一系列旨在详细了解所产生的自旋轨道扭矩的研究活动,为低功率自旋电子器件奠定基础Weyl 半金属将在 Weyl 半金属和铁磁金属之间的一系列界面上彻底表征电荷到自旋的转换过程,以量化这些相同结构的界面特性。使用共振 X 射线反射率进行表征,该技术允许将元素浓度和磁化强度确定为界面深度的函数,自旋轨道扭矩效率与界面的成分和磁性之间的相关性将得到阐明。内在(韦尔物理)和外在(界面上的非理想性)对扭矩的贡献的作用这些活动将深入了解基于设备的结构中真实界面的自旋轨道扭矩。该研究还将利用与行业相关的沉积工艺来识别新颖的自旋轨道扭矩,包括与面外自旋极化相关的扭矩,这些扭矩是由韦尔半金属的独特特性实现的,并量化与非易失性磁存储器相关的扭矩指标。设备和热驱动随机振荡器,其中自由磁层的磁化通过自旋轨道扭矩控制,通过这些研究活动,该项目将推动在新兴电子和自旋电子学中使用韦尔半金属的进展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Axel Hoffmann其他文献

Persistent Photoconductivity in High-Tc Superconductors
高温超导体中的持久光电导性
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Axel Hoffmann; Tamio Endo; Jacobo Santamaria; Z.F. Ren; J. Y. Lao; J. H. Wang; Ivan K. Schuller
  • 通讯作者:
    Ivan K. Schuller
Time Refraction of Spin Waves.
自旋波的时间折射。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. Schultheiss;N. Sato;P. Matthies;L. Körber;Kai Wagner;T. Hula;O. Gladii;John E. Pearson;Axel Hoffmann;Manfred Helm;Jürgen Fassbender;H. Schultheiss
  • 通讯作者:
    H. Schultheiss
Optical Detection of Phase-Resolved Ferromagnetic Resonance in Epitaxial FeCo Thin Films
外延 FeCo 薄膜中相分辨铁磁共振的光学检测
  • DOI:
    10.1109/tmag.2019.2893819
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yi Li;Fanlong Zeng;Hilal Saglam;Joseph Sklenar;John E.Pearson;Thomas Sebastian;Yizheng Wu;Axel Hoffmann;Wei Zhang
  • 通讯作者:
    Wei Zhang
Epitaxial patterning of nanometer-thick Y3Fe5O12films with low magnetic damping
  • DOI:
    10.1039/c5nr06808h
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Shaozhen Li;Wei Zhang;Junjia Ding;John E. Pearson;Valentine Novosad;Axel Hoffmann
  • 通讯作者:
    Axel Hoffmann
Towards a Theory of Explanation and Prediction for the Formation of Trust in IT Artifacts
建立 IT 制品信任形成的解释和预测理论
  • DOI:
  • 发表时间:
    2011-12-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthias Söllner;Axel Hoffmann;Holger Hoffmann;J. Leimeister
  • 通讯作者:
    J. Leimeister

Axel Hoffmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

岩石节理形貌三维分异特性与接触传力机制及其关联性研究
  • 批准号:
    52304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超级增强子关联癌基因ALDH3A1促进食管癌细胞抵抗铁死亡的作用机制研究
  • 批准号:
    82372697
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
  • 批准号:
    62372156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非厄米量子映射系统的非时序关联子研究
  • 批准号:
    12365002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
魔角石墨烯中平带及关联电子态的研究与调控
  • 批准号:
    12304226
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Correlating Large-Scale Visual Structures to Entrainment Mechanisms in Buoyant and Momentum-Driven Plumes
合作研究:将大规模视觉结构与浮力和动量驱动羽流中的夹带机制相关联
  • 批准号:
    2231780
  • 财政年份:
    2022
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Correlating Large-Scale Visual Structures to Entrainment Mechanisms in Buoyant and Momentum-Driven Plumes
合作研究:将大规模视觉结构与浮力和动量驱动羽流中的夹带机制相关联
  • 批准号:
    2231781
  • 财政年份:
    2022
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Correlating Device Performance and Interfacial Properties for Weyl Spintronics
合作研究:关联 Weyl 自旋电子学的器件性能和界面特性
  • 批准号:
    2031870
  • 财政年份:
    2020
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: Correlating Optoelectronic Properties with Defects in One-Dimensional Perovskite Nanocrystals
合作研究:将光电特性与一维钙钛矿纳米晶体的缺陷相关联
  • 批准号:
    1904042
  • 财政年份:
    2019
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Correlating Optoelectronic Properties with Defects in One-Dimensional Perovskite Nanocrystals
合作研究:将光电特性与一维钙钛矿纳米晶体的缺陷相关联
  • 批准号:
    1903990
  • 财政年份:
    2019
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了