Deformation Mechanisms Governing Torsional Fatigue Failure of Additively Manufactured Metals at High Temperatures

高温下增材制造金属扭转疲劳失效的变形机制

基本信息

  • 批准号:
    2055027
  • 负责人:
  • 金额:
    $ 14.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Recent advances in the 3D metal printing/additive manufacturing technology have allowed for the realization and rapid production of nickel-based metal superalloy components, extending their geometric design space and mechanical performance envelope. Nevertheless, there is a need to ensure that these additively manufactured components can withstand in-service operational conditions while meeting necessary functional requirements and durability. Torsional fatigue, characterized by cyclic twisting loads, is often an underlying cause for failure of nickel-based metal superalloys used in the extreme environments of rocket and jet engines, high performance automobiles, and pressure vessels. These extreme temperature environments are characterized by a complex loading state, in which the deformation mechanisms contributing to torsional fatigue failure remain unclear. This award supports fundamental research to delineate the principal deformation mechanisms at the microstructural level, which govern torsional fatigue failure of additively manufactured nickel-based metal superalloys subject to varying service conditions. This research will advance the current state of knowledge and maximize durability and viability of these alloys for in-service use, thereby maturing the current technology. Additionally, this study will broaden participation, outreach, and professional training of under-represented minority undergraduate and graduate students in STEM research spanning across the disciplines of mechanics, manufacturing, and materials science and engineering. Research outcomes will be used to establish enhanced educational curriculum/tools, including incorporation of a research project-based teaching and learning structure.The fundamental problem that this research addresses is capturing the micron scale to structural scale deformation response spectrum experienced by additively manufactured nickel superalloys under torsional fatigue loading conditions at ambient and high temperatures representing in-service component conditions. The role of temperature, varying cyclic torsional loadings, and additive manufacturing processing conditions and build orientation will be explored. A variety of material characterization techniques, such as energy dispersive spectroscopy, X-ray diffraction, and electron microscopy, will be used in conjunction with extensive fatigue testing to capture the driving microstructural mechanisms leading to torsional fatigue crack initiation and growth. It is anticipated that outcomes resulting from this study will reveal how torsional response of these alloys is impacted in terms of microstructural evolution under ambient and in-service operational conditions, potentially providing insights that will contribute to an understanding of their multiaxial fatigue response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
3D 金属打印/增材制造技术的最新进展使得镍基金属高温合金部件的实现和快速生产成为可能,扩展了其几何设计空间和机械性能范围。然而,需要确保这些增材制造的部件能够承受使用中的操作条件,同时满足必要的功能要求和耐用性。以循环扭转载荷为特征的扭转疲劳通常是火箭和喷气发动机、高性能汽车和压力容器极端环境中使用的镍基金属高温合金失效的根本原因。这些极端温度环境的特点是复杂的载荷状态,其中导致扭转疲劳失效的变形机制仍不清楚。该奖项支持基础研究,以描述微观结构层面的主要变形机制,该机制控制增材制造的镍基金属高温合金在不同使用条件下的扭转疲劳失效。这项研究将推进当前的知识水平,并最大限度地提高这些合金在使用中的耐用性和可行性,从而使当前的技术成熟。此外,这项研究还将扩大少数族裔本科生和研究生在机械、制造、材料科学与工程等学科 STEM 研究中的参与、推广和专业培训。研究成果将用于建立强化的教育课程/工具,包括纳入基于研究项目的教学和学习结构。这项研究解决的根本问题是捕获增材制造的镍高温合金所经历的微米尺度到结构尺度的变形响应谱在代表使用中部件条件的环境温度和高温下的扭转疲劳载荷条件下。将探讨温度、变化的循环扭转载荷以及增材制造加工条件和构建方向的作用。各种材料表征技术,例如能量色散光谱、X射线衍射和电子显微镜,将与广泛的疲劳测试结合使用,以捕获导致扭转疲劳裂纹萌生和扩展的驱动微观结构机制。预计这项研究的结果将揭示这些合金的扭转响应在环境和使用中操作条件下的微观结构演变如何受到影响,从而可能提供有助于理解其多轴疲劳响应的见解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microstructural Defects Governing Torsional Fatigue Failure of Additively Manufactured As-Built and Heat-Treated Inconel 718
  • DOI:
    10.1016/j.engfailanal.2022.106975
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Sanna F. Siddiqui;Elise Araiza
  • 通讯作者:
    Sanna F. Siddiqui;Elise Araiza
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanna Siddiqui其他文献

Sanna Siddiqui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanna Siddiqui', 18)}}的其他基金

CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant

相似国自然基金

基于植物酚类生态友好型功能材料的蓝藻水华全生命周期防控与治理机制研究
  • 批准号:
    52370164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
反向定制情境下制造商和平台企业间大数据共享对创新影响及治理机制研究
  • 批准号:
    72302182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境司法专门化的绿色治理效应与影响机制研究——来自非上市企业的经验证据
  • 批准号:
    72302131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
法律机制与独立董事治理:来自“康美药业案”的外生冲击
  • 批准号:
    72302105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目

相似海外基金

Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Research Grant
Dissecting regulatory mechanisms governing histone H3 lysine 9 methylation
剖析组蛋白 H3 赖氨酸 9 甲基化的调控机制
  • 批准号:
    BB/Y002857/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Research Grant
Unravelling post-transcriptional mechanisms governing the plant's response to high temperature
揭示控制植物对高温反应的转录后机制
  • 批准号:
    BB/Y001672/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Research Grant
Synaptic mechanisms governing brain reserve
控制大脑储备的突触机制
  • 批准号:
    23K18449
  • 财政年份:
    2023
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechanisms Governing Uterine Epithelial Plasticity
子宫上皮可塑性的调控机制
  • 批准号:
    10710938
  • 财政年份:
    2023
  • 资助金额:
    $ 14.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了