Collaborative Research: Development of Realistic Seismic Input Motions for Improving the Resilience of Infrastructure to Earthquakes

合作研究:开发真实的地震输入运动以提高基础设施的抗震能力

基本信息

  • 批准号:
    2053694
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The ability to reconstruct a seismic wave field in a domain of interest from sparsely-measured seismic ground motion data can help engineers to accurately model potential damage during earthquakes, improve safety, and reduce costs. Realistic seismic ground motions are essential for improving design and assessment of infrastructure by engineers, owners, and regulators. Although a large amount of ground motion data are available from modern sensors (e.g., accelerometers, optical cables, etc.), no established method can reconstruct the full 3 component (3C) incident wave field from the measurements in a three dimensional (3D) near-surface domain. This Disaster Resilience Research Grants (DRRG) project will address this need by developing a new method for reconstructing a full, 3C seismic wave field within a soil/rock volume adjacent to infrastructure from field measurements. The resulting 3C seismic wave field obtained by this approach accounts for local geology and variability, and can be used as a realistic seismic motion input into models of structures and infrastructure to assess their performance during earthquakes.Current use of one component (1C) motions for horizontal and vertical seismic shaking introduces a number of epistemic, modeling uncertainties into soil-structure interaction analysis. Regional-scale wave models need information about seismic sources, and deep and shallow geology that introduces large epistemic and aleatory, parametric uncertainties in the generated seismic motions. This project will develop a method for resolving these issues and providing accurate, realistic seismic motions that will improve modeling and simulation of earthquake-soil-structure interaction (ESSI) behavior. Consequently, design of infrastructure and lifelines and assessment of their earthquake response will be improved, resulting in increased resilience to seismic loading. The method will be integrated into a public domain program, Real-ESSI simulator (http://real-essi.us). The methodology will be scalable to various types of measurement modes (e.g., full translational 3C, 6C (translational 3C with rotational 3C), vertical-only 1C or the amplitude of full-3C motions measured by accelerometers at discrete locations, surface vibrations measured by vision-based sensors, or 3C motions-along-lines measured by optical cables). An advisory panel will provide feedback on the project to facilitate translation of the research into industrial practice. The PIs will develop online educational material on 'Inverse Modeling for ESSI Systems'. Such educational effort and material will help educate not only students working on this project, but also undergraduate and graduate students worldwide, as well as practicing engineers with interest in modeling of ESSI behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过稀疏测量的地震地面运动数据重建在感兴趣的领域中的地震波场的能力可以帮助工程师准确地模拟地震期间潜在的损害,提高安全性并降低成本。现实的地震地面运动对于改善工程师,所有者和监管机构对基础设施的设计和评估至关重要。尽管可从现代传感器(例如加速度计,光电缆等)获得大量地面运动数据,但没有建立的方法可以从三维(3D)近表面域中的测量值重建整个3个组件(3C)入射波场。这项灾难弹性研究补助金(DRRG)项目将通过开发一种新方法来解决这种需求,该方法通过通过现场测量来重建基础设施附近的土壤/岩石量中的完整3C地震波场。通过这种方法获得的由此产生的3C地震波场解释了局部地质和可变性,可以用作现实的地震运动输入到结构和基础架构模型中,以评估其在地震期间的性能。对一个组件(1C)的使用(1C)运动(1C)运动(1C)用于水平和垂直摇动,将许多分析的不融合介绍了一个分析的分析,以分析界面,以分析土壤。区域尺度波浪模型需要有关地震来源的信息,以及深层地质,这些信息引入了生成的地震运动中的大量认知和造成的参数不确定性。该项目将开发一种解决这些问题并提供准确,现实的地震动作的方法,以改善地震 - 土壤结构互动(ESSI)行为的建模和模拟。因此,将改善基础设施和生命线的设计以及对地震反应的评估,从而提高对地震载荷的弹性。该方法将集成到公共域程序,真实模拟器(http://real-essi.us)中。该方法将可扩展到各种类型的测量模式(例如,完整的转换3C,6C(带旋转3C的转换3C),仅垂直1C或通过离散位置处的精子计测量的完整3C运动的振幅,通过基于视觉的传感器或3C运动测量的表面振动在离散位置上测量的表面振动。咨询小组将提供有关该项目的反馈,以促进将研究转化为工业实践。 PI将开发有关“ ESSI系统的反向建模”的在线教育材料。这种教育努力和材料将不仅有助于教育从事该项目的学生,而且还可以教育全世界的本科生和研究生,以及对具有ESSI行为建模兴趣的工程师的实践。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来获得支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Level-Set and Learn: Convolutional Neural Network for Classification of Elements to Identify an Arbitrary Number of Voids in a 2D Solid Using Elastic Waves
  • DOI:
    10.1061/jenmdt.emeng-6840
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Fazle Mahdi Pranto;Shashwat Maharjan;Chan-Ung Jeong
  • 通讯作者:
    Fazle Mahdi Pranto;Shashwat Maharjan;Chan-Ung Jeong
Multilevel Genetic Algorithm–Based Acoustic–Elastodynamic Imaging of Coupled Fluid–Solid Media to Detect an Underground Cavity
多级遗传算法 - 基于耦合流体 - 固体介质的声学 - 弹性动力成像来检测地下洞穴
  • DOI:
    10.1061/(asce)cp.1943-5487.0001058
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Guidio, Bruno;Nam, Boo Hyun;Jeong, Chanseok
  • 通讯作者:
    Jeong, Chanseok
Deep and Convolutional Neural Networks for identifying vertically-propagating incoming seismic wave motion into a heterogeneous, damped soil column
  • DOI:
    10.1016/j.soildyn.2022.107510
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Shashwat Maharjan;B. Guidio;A. Fathi;C. Jeong
  • 通讯作者:
    Shashwat Maharjan;B. Guidio;A. Fathi;C. Jeong
Passive seismic inversion of SH wave input motions in a truncated domain
截断域内 SH 波输入运动的被动地震反演
  • DOI:
    10.1016/j.soildyn.2022.107263
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Guidio, Bruno;Jeremić, Boris;Guidio, Leandro;Jeong, Chanseok
  • 通讯作者:
    Jeong, Chanseok
Effective seismic force retrieval from surface measurement for SH-wave reconstruction
从表面测量中有效检索地震力以进行 SH 波重建
  • DOI:
    10.1016/j.soildyn.2022.107682
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Guidio, Bruno;Goh, Heedong;Jeong, Chanseok
  • 通讯作者:
    Jeong, Chanseok
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chanseok Jeong其他文献

On the reconstruction of the near-surface seismic motion
近地表地震运动的重建
  • DOI:
    10.1016/j.soildyn.2023.108414
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    B. Guidio;H. Goh;L. Kallivokas;Chanseok Jeong
  • 通讯作者:
    Chanseok Jeong

Chanseok Jeong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chanseok Jeong', 18)}}的其他基金

Full-Waveform Inversion of Seismic Input Motions in a Truncated Domain
截断域中地震输入运动的全波形反演
  • 批准号:
    2044887
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Full-Waveform Inversion of Seismic Input Motions in a Truncated Domain
截断域中地震输入运动的全波形反演
  • 批准号:
    1855406
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

农业绿色发展背景下水稻规模户“双减”行为及干预策略研究:基于纵向协作视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
农业绿色发展背景下水稻规模户“双减”行为及干预策略研究:基于纵向协作视角
  • 批准号:
    72273141
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
在线协作学习中群体认知发展机制研究:计算建模、分析反馈及教学干预
  • 批准号:
    62177041
  • 批准年份:
    2021
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
模糊环境下面向可持续发展的应急组织指派与协作优化策略研究
  • 批准号:
    71904021
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
面向人机协作任务规划的认知发展与学习方法研究
  • 批准号:
    61906203
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了