Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications
合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用
基本信息
- 批准号:2053668
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex mathematical models are ubiquitous in physical, atmospheric, biological, and engineering sciences. These models, often called simulators, are used to describe complicated interactions among many variables and processes in the systems and are sometimes accompanied by massive data. The process of extracting information and knowledge from the simulators and observational data can be called an inverse problem. However, solving inverse problems and quantifying the uncertainty is challenging. This project addresses these challenges with novel methods, efficient algorithms, and software tools to enable fast simulations and inverse problem solutions. A particular application in this project is inverse problems in remote sensing. This research project integrates the advancements in statistics, applied mathematics, data science, and remote sensing. It will provide ways to assess the quality and uncertainty of remote sensing data products to address scientific hypotheses. The PIs will apply and evaluate these new methods in the context of inverse problems in remote sensing for carbon monitoring, but these methods can also be used for data-intensive inverse problems in many other areas including climatology, geophysics, and medical imaging. This project will directly train student researchers and will develop educational materials. The project findings will be shared via journal publications and conference presentations.This collaborative research project will contribute to significant advances in statistical modeling, uncertainty quantification, and efficient scalable methods to solve large-scale inverse problems associated with high-dimensional systems. The PIs will establish new methods to build statistical emulators with computational efficiency and statistical guarantees. The scalability is achieved by joint dimension reduction for both the input and output spaces, while theoretical approximation properties of the resulting emulators will be derived. The resulting emulators will facilitate large-scale simulation-based uncertainty quantification experiments for remote sensing data. This framework of statistical emulation will also be integrated into the algorithms to infer inverse problem solutions to enable faster computation. With a particular focus on high-dimensional systems encountered in remote sensing, the methods developed will lead to a new paradigm of statistical methods for complex inference problems and uncertainty quantification in remote sensing and transform the current practice of remote sensing retrieval. Open-source software for the proposed new approaches will be made available to a wide community of scientists and engineers. By partnering with collaborators in remote sensing, the methods developed in this project will be of practical utility for researchers in various applications including carbon monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的数学模型在物理,大气,生物学和工程科学中无处不在。这些模型(通常称为模拟器)用于描述系统中许多变量和过程之间的复杂相互作用,有时伴随着大量数据。从模拟器中提取信息和知识的过程以及观察数据可以称为反问题。但是,解决反问题并量化不确定性是具有挑战性的。该项目通过新颖的方法,有效的算法和软件工具来解决这些挑战,以实现快速模拟和逆问题解决方案。该项目中的特定应用是遥感中的反问题。该研究项目整合了统计,应用数学,数据科学和遥感方面的进步。它将提供评估遥感数据产品的质量和不确定性以解决科学假设的方法。 PI将在碳监测的遥感中应用和评估这些新方法,但这些方法也可以用于许多其他领域的数据密集型反问题,包括气候,地球物理学和医学成像。该项目将直接培训学生研究人员,并将开发教育材料。该项目的发现将通过期刊出版物和会议演讲共享。该协作研究项目将在统计建模,不确定性量化和有效的可扩展方法方面取得重大进展,以解决与高维系统相关的大规模逆问题。 PI将建立新的方法来构建具有计算效率和统计保证的统计模拟器。通过降低输入空间和输出空间的关节维度可以实现可伸缩性,而所得模拟器的理论近似特性将得出。所得的仿真器将促进遥感数据的大规模模拟不确定性量化实验。该统计模拟的框架也将集成到算法中,以推断逆问题解决方案以实现更快的计算。特别关注遥感中遇到的高维系统,开发的方法将为复杂的推理问题和遥感中的不确定性量化提供新的统计方法范式,并改变了当前的遥感检索实践。拟议的新方法的开源软件将提供给广泛的科学家和工程师社区。通过与遥感方面的合作者合作,该项目中开发的方法对于包括碳监测在内的各种应用程序的研究人员将是实用实用性。该奖项反映了NSF的法定任务,并且认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations
- DOI:10.1007/s13253-023-00530-9
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:B. Konomi;E. Kang;Ayat Almomani;J. Hobbs
- 通讯作者:B. Konomi;E. Kang;Ayat Almomani;J. Hobbs
Modeling large multivariate spatial data with a multivariate fused Gaussian process
使用多元融合高斯过程对大型多元空间数据进行建模
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kang, E. L.;Li, M.;Cawse-Nicholson, K.;Braverman, A.
- 通讯作者:Braverman, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Kang其他文献
Emily Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于因果推理的人机物融合系统需求建模与验证研究
- 批准号:62362006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大规模异构边缘网络的智能低碳协同推理机制研究
- 批准号:62301335
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多重知识驱动的少样本视频时序规划及推理关键技术研究
- 批准号:62372403
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于模型切分的深度学习推理任务优化放置研究
- 批准号:62302489
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311249 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
- 批准号:
2312263 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant