SaTC: CORE: Small: Robust, Privacy- and Utility-Preserving Fingerprinting Schemes for Correlated Data
SaTC:核心:小型:针对相关数据的稳健、隐私和实用性保护指纹方案
基本信息
- 批准号:2050410
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In today's data-driven world, to receive personalized services or contribute to scientific studies, data owners share sensitive information with a wide-range of service providers (SPs). While doing so, they want to make sure that SPs will comply with the data usage agreements and not engage in unauthorized sharing of their data. Thus, in case of an unauthorized distribution of their data, data owners want to detect (and identify) the source of such data leakages to keep the corresponding SP(s) liable. Digital fingerprinting is a technique to identify the recipient of a digital object by embedding a unique mark (called fingerprint) into the shared object, with the aim to identify the guilty SP who is responsible for data leakage. However, existing fingerprinting techniques are not directly applicable for sharing sensitive, correlated, and high value (in terms of utility) data because (i) they (especially for multimedia data) utilize the high redundancy in the data, (ii) the embedded marks need to be large to provide robustness against attacks, which reduces the utility of shared data, and (iii) they do not consider the correlations between data points, which reduces the robustness of the fingerprint. Such unique challenges for fingerprinting correlated data require fundamentally new ways to design fingerprinting algorithms that also provide high data utility and data privacy. In this research, the investigators propose novel techniques for robust, privacy- and utility-preserving fingerprinting of correlated data. First, the vulnerability of existing fingerprinting schemes to the attacks will be shown by exploiting the correlations in the data. To mitigate the identified vulnerabilities, new probabilistic fingerprinting algorithms that provide robustness against a wide-variety of attacks will be developed. Furthermore, realizing the similarities between the proposed fingerprinting algorithms and privacy-preserving data sharing, for the first time, the proposed techniques will provide both privacy and robust fingerprinting while sharing data. Specifically, the proposed research thrusts include: (i) in-depth study of the proposed probabilistic fingerprinting algorithms, including formal robustness analysis, studying different correlation models, and improving utility considering different utility definitions; (ii) application of the proposed fingerprinting schemes for different data types, such as personal correlated data, databases, and graphs; (iii) developing data sharing metrics and algorithms that provide privacy along with robust fingerprinting by exploring differential privacy and its variants; and (iv) developing algorithms to find the optimal order of data processing that simultaneously optimize fingerprint robustness, privacy, and utility. In a broader view, the investigators expect the impact of the proposed research to be significant in several areas: (i) on society, by providing tools that identify the sources of unauthorized data leakages with high probability. This will deter malicious SPs from unauthorized sharing of their users’ data. Furthermore, data owners, knowing they have stronger control on how their data will be used and shared, will be more willing to share their data with the SPs; (ii) on education and learning, by training graduate, undergraduate, and high school students; and (iii) on broadening participation of underrepresented groups in computing, by recruitment of women and underrepresented groups in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今的数据驱动世界中,要获得个性化服务或为科学研究做出贡献,数据所有者与大量服务提供商(SP)共享敏感信息。在这样做的同时,他们想确保SPS将遵守数据使用协议,而不是未经授权的数据共享。如果未经授权的数据分布,数据所有者希望检测(并确定)此类数据泄漏的来源,以使相应的SP(S)承担责任。数字指纹识别是一种通过将唯一标记(称为指纹)嵌入共享对象的技术来识别数字对象的接收者,目的是确定负责数据泄漏的有罪SP。 However, existing fingerprinting techniques are not directly applicable for sharing sensitive, correlated, and high value (in terms of utility) data because (i) they (especially for multimedia data) utilize the high redundancy in the data, (ii) the embedded marks need to be large to provide robustness against attacks, which reduces the utility of shared data, and (iii) they do not consider the correlations between data points, which reduces指纹的鲁棒性。对于指纹相关的数据,这种独特的挑战需要从根本上设计设计指纹算法的新方法,这些算法也提供了高数据实用性和数据隐私。在这项研究中,研究人员提出了针对相关数据的鲁棒,隐私和公用事业的指纹识别的新技术。首先,现有指纹方案对攻击的脆弱性将通过利用数据中的相关性来显示。为了减轻所确定的漏洞,将开发出可为广泛攻击提供鲁棒性的新概率指纹识别算法。此外,意识到提议的指纹算法与隐私数据共享之间的相似之处首次,提议的技术将在共享数据时提供隐私和强大的指纹。具体而言,拟议的研究推力包括:(i)对拟议的概率指纹识别算法的深入研究,包括正式的鲁棒性分析,研究不同的相关模型以及考虑不同的效用定义的效用; (ii)针对不同数据类型(例如个人相关的数据,数据库和图形)应用所提出的指纹方案; (iii)开发数据共享指标和算法,这些指标和算法通过探索差异隐私及其变体来提供隐私以及强大的指纹识别; (iv)开发算法以找到最佳的数据处理顺序,这些算法仅优化指纹鲁棒性,隐私和实用性。从更广泛的角度来看,调查人员期望拟议的研究在多个领域的影响很大:(i)对社会,通过提供识别未经授权数据泄漏来源的工具,并具有很高的可能性。这将从未经授权的用户数据共享中确定恶意SP。此外,数据所有者知道他们对如何使用和共享数据具有强大的控制权,将更愿意与SPS共享他们的数据; (ii)通过培训毕业生,本科和高中生在教育和学习方面; (iii)关于通过招募妇女和代表性不足的群体在计算中扩大代表性不足的群体的参与。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估NSF的法定任务。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Robust Fingerprinting of Relational Databases by Mitigating Correlation Attacks
- DOI:10.1109/tdsc.2022.3191117
- 发表时间:2023-07
- 期刊:
- 影响因子:7.3
- 作者:Tianxi Ji;Erman Ayday;Emre Yilmaz;Pan Li
- 通讯作者:Tianxi Ji;Erman Ayday;Emre Yilmaz;Pan Li
The Curse of Correlations for Robust Fingerprinting of Relational Databases
- DOI:10.1145/3471621.3471853
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Tianxi Ji;Emre Yilmaz;Erman Ayday;Pan Li
- 通讯作者:Tianxi Ji;Emre Yilmaz;Erman Ayday;Pan Li
Privacy-Preserving and Robust Watermarking on Sequential Genome Data using Belief Propagation and Local Differential Privacy
- DOI:10.1101/2020.09.04.283135
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Abdullah Çaglar Öksüz;Erman Ayday;U. Güdükbay
- 通讯作者:Abdullah Çaglar Öksüz;Erman Ayday;U. Güdükbay
Privacy-Preserving Database Fingerprinting
保护隐私的数据库指纹
- DOI:10.14722/ndss.2023.24693
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ji, Tianxi;Ayday, Erman;Yilmaz, Emre;Li, Ming;Li, Pan
- 通讯作者:Li, Pan
Robust optimization-based watermarking scheme for sequential data
基于鲁棒优化的顺序数据水印方案
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ayday, E;Yilmaz, E;Yilmaz, A
- 通讯作者:Yilmaz, A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erman Ayday其他文献
When Biology Gets Personal: Hidden Challenges of Privacy and Ethics in Biological Big Data
当生物学变得个性化时:生物大数据中隐私和道德的隐藏挑战
- DOI:
10.1142/9789813279827_0035 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Gamze Gürsoy;A. Harmanci;Haixu Tang;Erman Ayday;S. Brenner - 通讯作者:
S. Brenner
Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering
协作聚类的隐私保护最优参数选择
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Maryam Ghasemian;Erman Ayday - 通讯作者:
Erman Ayday
Differentially Private Fingerprinting for Location Trajectories
位置轨迹的差分隐私指纹
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuzhou Jiang;Emre Yilmaz;Erman Ayday - 通讯作者:
Erman Ayday
Threats and Solutions for Genomic Data Privacy
基因组数据隐私的威胁和解决方案
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Erman Ayday;J. Hubaux - 通讯作者:
J. Hubaux
Erman Ayday的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erman Ayday', 18)}}的其他基金
CAREER: Privacy-Preserving Sharing of Genomic Databases
职业:基因组数据库的隐私保护共享
- 批准号:
2141622 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant