Collaborative Research: Flying snakes: fluid mechanics of deforming articulated bodies

合作研究:飞蛇:关节体变形的流体力学

基本信息

  • 批准号:
    2027532
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

There are numerous forms of flight ranging from the natural flapping of insect wings to engineered multi-rotor helicopters. Among the diversity of systems for producing flight forces, the flying snake embodies a highly unexpected and non-intuitive solution for aerial locomotion. With a cylindrical body, the snake has no extendable surfaces to create or control flight forces. Despite these limitations, the Asian arboreal species known as ‘flying’ snakes possess a surprisingly sophisticated ability to glide. These snakes jump from trees, flatten their body, and undulate in the air in a complex three-dimensional pattern to produce aerial locomotion. Most surprisingly, the snakes can actively maneuver in the air, capable of turning in mid-air under their own volition. Understanding how flying snakes achieve such feats is the first step toward duplicating this behavior in engineered devices, which could significantly advance design of robots in complex environments, with important applications to surveillance, search-and-rescue, and disaster monitoring. The aerial interaction physics of flying snakes - the strong coupling between the translational and rotational degrees of freedom of the snake as an articulated body - is largely unknown. This project will test the hypothesis that translational-rotational coupling is achieved through feedback between self-deformations (driven by undulation) and unsteady fluid mechanics. The research will use a combination of animal observations, experimental fluid mechanics, and computational fluid dynamics to reveal the fluid mechanics of deforming articulated bodies, of which the flying snake (genus Chrysopelea) is the prime example. The application of adaptive mesh refinement-based immersed boundary method to study fluid flows produced by gliding snakes will enable more efficient investigations on other complex fluids problems with dynamically moving objects across a wide range of Reynolds numbers. The proposed experimental and computational framework can potentially re-define the form and function of locomotion in fluid media for aerial and underwater robotic systems with enhanced mobility. The project involves a broad participation plan that will benefit a diverse range of groups. The principal investigators will engage under-represented students through programmatic connections to regional HBCUs, for summer undergraduate research as well as recruiting of graduate research assistants, at the three collaborating universities. Flying snakes excite the imagination of both students and the public, and the results of the experiments and computations will be disseminated both professionally and publicly, to media outlets and also directly to the public through social media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
飞行的形式多种多样,从昆虫翅膀的自然拍动到工程化的多旋翼直升机,在产生飞行力的系统的多样性中,飞蛇体现了一种非常意想不到且非直观的圆柱形空中运动解决方案。尽管蛇的身体没有可伸展的表面来产生或控制飞行力,但被称为“飞蛇”的亚洲树栖物种却拥有令人惊讶的复杂能力,这些蛇可以从树上跳下来,变平。最令人惊讶的是,蛇可以在空中主动机动,能够根据自己的意志在空中转弯,了解飞蛇如何实现这一目标。这项壮举是在工程设备中复制这种行为的第一步,这可以显着推进复杂环境中机器人的设计,在监视、搜索和救援以及灾害监测方面具有重要应用。之间的耦合蛇作为铰接体的平移和旋转自由度在很大程度上是未知的,该项目将测试平移旋转耦合是通过自变形(由波动驱动)和非定常流体力学之间的反馈来实现的假设。将结合动物观察、实验流体力学和计算流体动力学来揭示变形铰接体的流体力学,其中飞蛇(Chrysopelea)就是自适应网格的应用的典型例子。基于细化的浸没边界方法来研究滑行蛇产生的流体流动,将使对各种雷诺数范围内动态移动物体的其他复杂流体问题进行更有效的研究。所提出的实验和计算框架有可能重新定义形式和计算框架。该项目涉及一项广泛的参与计划,该计划将使不同的群体受益,主要研究人员将在夏季通过与地区 HBCU 的计划联系来吸引代表性不足的学生。三所合作大学的本科生研究以及研究生研究助理的招募激发了学生和公众的想象力,实验和计算的结果将在专业和公开场合向媒体和公众传播。通过社交媒体直接向公众公布。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The aerodynamics of flying snake airfoils in tandem configuration
串联配置的飞蛇翼型的空气动力学
  • DOI:
    10.1242/jeb.233635
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jafari, Farid;Holden, Daniel;LaFoy, Roderick;Vlachos, Pavlos P.;Socha, John J.
  • 通讯作者:
    Socha, John J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavlos Vlachos其他文献

Pavlos Vlachos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavlos Vlachos', 18)}}的其他基金

Collaborative Proposal: Long-term dynamics of Water-entry
合作提案:进水的长期动态
  • 批准号:
    1335957
  • 财政年份:
    2013
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
NSF/FDA SIR: Development of new measurement tools for accurate estimation of wall-shear stress in medical devices using Particle Image Velocimetry (PIV) methods
NSF/FDA SIR:开发新的测量工具,使用粒子图像测速 (PIV) 方法准确估计医疗器械中的壁剪切应力
  • 批准号:
    1239265
  • 财政年份:
    2012
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Arterial Flow Dynamics-Effects of Pulsatility, Compliance and Curvature
职业:动脉血流动力学 - 搏动性、顺应性和曲率的影响
  • 批准号:
    0547434
  • 财政年份:
    2006
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
MRI: Development of a Spatiotemporal Velocimetry with Simultaneous Size Measurements for Polydispersed Multi-Phase Flows
MRI:开发同时测量多分散多相流尺寸的时空测速仪
  • 批准号:
    0521102
  • 财政年份:
    2005
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Robust, High Sensitivity, Dynamic Wall Shear Sensors for Flow Diagnostics
用于流量诊断的坚固、高灵敏度、动态壁剪切传感器
  • 批准号:
    0510238
  • 财政年份:
    2005
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂服役条件下航母飞行甲板冲击载荷反演机理研究
  • 批准号:
    52305122
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字孪生驱动的空天飞行器热防护结构动响应监测方法研究
  • 批准号:
    52302514
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高保真度的猛禽翅尾翼变形的飞行稳定性研究
  • 批准号:
    12302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能变体飞行器时空特性流固耦合机理研究及优化设计
  • 批准号:
    52372346
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
涡喷动力智能飞行机甲人机共融协同控制方法研究
  • 批准号:
    62303244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
  • 批准号:
    2204445
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
  • 批准号:
    2038589
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
  • 批准号:
    2039026
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了