CAREER: Ultrafast Localized Plasmas in Dense Fluids: From Fundamental Phase-Change Phenomena and Diagnostics to Efficient Heat and Mass Transport
职业:稠密流体中的超快局域等离子体:从基本相变现象和诊断到高效的热和质量传输
基本信息
- 批准号:2048125
- 负责人:
- 金额:$ 53.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Energy and water are the interconnected foundations of our global society. Central to most thermo-electric energy conversion and water purification technologies are liquid-vapor phase-change processes such as boiling, evaporation and condensation. To improve these technologies that convert thermal energy to electrical energy or provide clean water, phase-change phenomena must be both efficient and controllable. The goal of this CAREER project is to integrate research and education around the use of ultrafast (20-100 nanoseconds) and fast (0.1-10 microseconds) pulsed plasma discharges in liquids and vapors to probe, manipulate or tune and enhance heat and mass transfer processes during liquid-vapor phase change encountered in boiling and desalination processes. Plasma, one of the four fundamental states of matter, is an ionized and highly energetic state of matter with unique physical and optical properties (consider, for example, lightning). By controlling the duration of a plasma in a dense fluid, such as liquid water, losses via heat transfer and electrolysis may be minimized, and the impact of the plasma on the fluid may be controlled. In this project, the plasma will be tailored to the applications. Ultrafast or non-thermal pulsed plasmas will be sued to measure temperature and species or locally perturb a fluid during boiling, and fast or thermal pulsed plasmas will be used to locally alter the state of the fluid in desalination processes. The project will also leverage this cross-disciplinary approach to convey the importance of efficient energy conversion and water resource utilization to a diverse group of students, ranging from grades K-8 to the university level, in the Bryan-College Station area of Texas. The goals of these efforts are to engage, encourage, and support the pursuit of science-related higher education and to train informed, current/future consumers of our energy and water resources.The intellectual focus of this project is the interaction between extremely short timescale pulsed non-thermal and thermal plasma discharges in dense fluids and the thermodynamic phase transitions that result from rapid energy deposition in the fluid. These plasma-fluid interactions will be experimentally characterized to fundamentally study highly transient liquid-vapor-solid phase-change and the physicochemical processes resulting from the controlled energy/timescale of pulsed plasma discharges in fluids. The fundamental studies will be leveraged to develop novel optical diagnostic techniques to measure species concentration and vapor phase temperature in situ during phase-change heat transfer using a non-thermal plasma as the probe. The findings will also be used to tune and enhance heat/mass transfer processes during boiling heat transfer and water purification through on-demand and localized bubble nucleation via a non-thermal plasma and salt-water separations through a thermal plasma. The plasma-fluid interaction framework will be leveraged as a novel vehicle to engage and introduce a diverse group of early-age students to energy conversion and clean water technologies and to spark their interest in science and engineering higher-education. The knowledge resulting from these research activities will also be actively integrated into thermal-fluid sciences curricula at the undergraduate and graduate levels to introduce and train students in state-of-the-art energy conversion and water purification technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源和水是我们全球社会的相互联系的基础。大多数热电能转化和净水技术的中心是液体蒸气相变的过程,例如沸腾,蒸发和凝结。为了改善这些将热能转化为电能或提供清洁水的技术,相变现象必须既有效又可控制。该职业项目的目的是围绕使用Ultrafast(20-100纳秒)和快速(0.1-10微秒)的脉冲等离子体排放液体和蒸气的脉冲等离子体排放来整合研究和教育,以探测,操纵或调整并增强液体蒸气量变化过程中的液体变化,并增强热量和质量转移过程。血浆是物质的四个基本状态之一,是具有独特物理和光学特性的电离且高能的物质状态(例如,考虑闪电)。通过控制密集液中血浆的持续时间(例如液态水),可以通过传热和电解损失,并且可以控制等离子体对流体的影响。在该项目中,等离子体将针对应用程序量身定制。超快或非热脉冲等离子体将被起诉以测量温度和物种,或者在煮沸过程中局部扰动液体,并且快速或热脉冲等离子体将用于在淡化过程中局部改变流体状态。该项目还将利用这种跨学科的方法来传达有效的能源转化和水资源利用的重要性,向多样化的学生组成,从K-8等级到大学级别的大学级别,位于德克萨斯州布莱恩 - 哥伦比尔大学地区。这些努力的目标是参与,鼓励和支持对科学相关的高等教育的追求,并培训我们能源和水资源的当前/未来消费者。该项目的智力重点是,在密集液体中极短时间的非热脉冲和热等离子体排放的极短时间脉冲脉冲和热力学中的热力学降低,导致快速流动的流动液的互动。这些等离子体流体相互作用将在实验上表征,以从根本上研究高度瞬时液体蒸气 - 固相变和由流体中脉冲血浆排放的受控能量/时间尺度产生的理化过程。将利用基本研究来开发新型的光学诊断技术,以测量使用非热等离子体作为探测器的探针,在相变热转移期间物种浓度和蒸气相温度的原位。这些发现还将通过按需和局部气泡成核通过非热等离子体和盐水分离通过热等离子体来调整和增强热量/传播过程。血浆流体的交互框架将被用作一种新型工具,以吸引和介绍各种各样的早期学生进行能源转化和清洁水技术,并激发他们对科学和工程高等教育的兴趣。这些研究活动所产生的知识还将积极整合到本科和研究生级别的热流体科学课程中,以介绍和培训学生进行最先进的能量转换和水纯化技术。这奖反映了NSF的法规任务,并被认为是通过基金会的知识优点和广泛的范围来评估的,并且值得通过评估来进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dion Antao其他文献
Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites
- DOI:
10.1016/j.matt.2024.06.038 - 发表时间:
2024-10-02 - 期刊:
- 影响因子:
- 作者:
Sourav Chakravarty;Wenting Hinz;Dion Antao;Patrick J. Shamberger - 通讯作者:
Patrick J. Shamberger
Dion Antao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
激光成丝超连续光谱及中红外少光学周期超快激光同步产生技术研究
- 批准号:62375154
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
- 批准号:22311530118
- 批准年份:2023
- 资助金额:37 万元
- 项目类别:国际(地区)合作与交流项目
强激光驱动分子与分子相互作用超快动力学精密测控研究
- 批准号:12304377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
致密气体介质中的超快动力学与脉冲整形研究
- 批准号:12374266
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
电调控二维材料激子超快动力学的多波段非线性光学研究
- 批准号:62305249
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineer Light-Matter Interactions: From Weak to Strong Coupling Regime
工程师光与物质相互作用:从弱耦合到强耦合机制
- 批准号:
21K13868 - 财政年份:2021
- 资助金额:
$ 53.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultrafast evaluation of localized photo-catalytic reactions
局部光催化反应的超快评估
- 批准号:
16H03887 - 财政年份:2016
- 资助金额:
$ 53.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optically Tweezered Localized Plasmonic Structured Illumination Microscopy (OT-LPSIM) for Ultrafast Super Resolution Bio-imaging
用于超快超分辨率生物成像的光镊局部等离子体结构照明显微镜 (OT-LPSIM)
- 批准号:
1604216 - 财政年份:2016
- 资助金额:
$ 53.39万 - 项目类别:
Standard Grant
Challenge of Ultrafast All-Optical Magnetic Recording Using Localized Circularly Polarized Light Excited by Nano-Antennas
使用纳米天线激发的局域圆偏振光进行超快全光磁记录的挑战
- 批准号:
22560349 - 财政年份:2010
- 资助金额:
$ 53.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultrafast Time-Resolved Crystallography on Scapharca Hb
Scapharca Hb 的超快时间分辨晶体学
- 批准号:
7161771 - 财政年份:2004
- 资助金额:
$ 53.39万 - 项目类别: