CAREER: Wastewater Counts: Real-time de facto Population Estimation for Quantitative Wastewater-based Epidemiology

职业:废水计数:基于废水的定量流行病学的实时实际人口估计

基本信息

  • 批准号:
    2047470
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Wastewater-based epidemiology (WBE) has emerged as a complementary approach to existing clinical tools to track the spread of infectious disease. WBE is based on using microbial biomarkers in wastewater to monitor the onset, spread, and community transmission of infectious diseases. Although WBE has provided valuable insight into the spread of SARS-CoV-2 virus during the COVID-19 pandemic, much work remains to be done to enable accurate quantitative estimates using this technique. The goal of this CAREER project is to address this critical challenge through the development of computational approaches, models, and tools to accurately predict the size of a disease outbreak from wastewater biomarker data. Successful completion of this project will benefit society through the development of new and experimentally validated computational tools to predict community disease spread. This will allow a fuller exploitation of the large amount of WBE data that are being collected in the United States to advance public health. Further benefits to society will be achieved through the mentoring of a doctoral student at Washington University in St. Louis. Additional benefits derive from the development of an education kit focused on environmental data sciences to advance science literacy in K-12 students.The overarching goal of this CAREER project is to advance the science and engineering of wastewater-based epidemiology (WBE) through the development and validation of new computational tools to estimate the size of affected population in real time from biomarkers in untreated wastewater. This will be achieved through specific research designed to (1) build a computational framework for wastewater microbiome-based population models, (2) develop and experimentally validate models and computational tools for estimating the size affected populations in infectious disease outbreaks using community wastewater surveillance data, and (3) apply these new models and tools to evaluate and improve the design of WBE sampling programs. The educational plan will (1) engage wastewater treatment and public health practitioners in refining and disseminating microbiome-based population models and design tools for WBE, 2) enhance the interdisciplinary training of environmental engineering undergraduate and graduate students by integrating data science into the educational curriculum, and 3) develop and distribute a K-12 educational kit on environmental data science based on Next Generation Science Standards. The successful completion of this project has strong potential to transform our ability to track disease outbreaks through the development of new computational tools for WBE surveillance programs. The broader impacts of this project will be enhanced by training practitioners and providing educational resources to diverse student populations at the K-12, college, and postgraduate levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于废水的流行病学(WBE)已成为追踪传染病传播的现有临床工具的一种补充方法。 WBE基于废水中使用微生物生物标志物来监测传染病的发作,传播和社区传播。尽管WBE在COVID-19大流行期间对SARS-COV-2病毒的传播提供了宝贵的见解,但使用此技术可以实现准确的定量估计还有许多工作要做。该职业项目的目的是通过开发计算方法,模型和工具来应对这一关键挑战,以准确预测废水生物标志物数据中疾病爆发的大小。成功完成该项目将通过开发新的和实验验证的计算工具来预测社区疾病扩散,从而使社会受益。这将允许对美国收集的大量WBE数据进行更全面的利用,以提高公共卫生。通过在圣路易斯华盛顿大学指导一名博士生的指导,将获得进一步的好处。额外的好处源于开发侧重于环境数据科学,以推进K-12学生的科学素养。该职业项目的总体目标是通过开发和验证新的计算工具的开发和验证,以估算来自生物市场中受影响的人群的大小,从而促进了基于废水的流行病学(WBE)的科学和工程。 This will be achieved through specific research designed to (1) build a computational framework for wastewater microbiome-based population models, (2) develop and experimentally validate models and computational tools for estimating the size affected populations in infectious disease outbreaks using community wastewater surveillance data, and (3) apply these new models and tools to evaluate and improve the design of WBE sampling programs.教育计划将(1)与废水治疗和公共卫生从业人员一起介入和传播基于微生物组的人群模型和设计工具,2)通过将数据科学整合到教育课程中,并在k-12教育方面发展和分配了基于环境学的科学,从而增强了对环境工程本科生和研究生的跨学科培训。该项目的成功完成具有强大的潜力,可以通过开发用于WBE监视计划的新计算工具来改变疾病暴发的能力。培训从业人员将增强该项目的更广泛影响,并为K-12,大学和研究生级别的不同学生提供教育资源。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging investigator series: meta-analyses on SARS-CoV-2 viral RNA levels in wastewater and their correlations to epidemiological indicators
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fangqiong Ling其他文献

Meter-scale variation within a single transect demands attention to taxon accumulation curves in riverine microbiome studies
单一横断面内的米尺度变化需要关注河流微生物组研究中的分类单元积累曲线
Impact of Chloramination on the Development of Oligotrophic Biofilms
氯胺化对寡营养生物膜发育的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fangqiong Ling
  • 通讯作者:
    Fangqiong Ling
Impacts of blending advanced treated water and traditional groundwater supply on lead and copper concentrations and microbial diversity in premise plumbing
  • DOI:
    10.1016/j.watres.2024.122726
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anushka Mishrra;Lin Zhang;Janelle Junior;Fangqiong Ling;Nicole K. Blute;Daniel E. Giammar
  • 通讯作者:
    Daniel E. Giammar

Fangqiong Ling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于温度调制的重金属废水多组分光谱长效在线检测方法
  • 批准号:
    62303073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
  • 批准号:
    52300210
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自支撑光电催化体系还原富集铀纯化厂废水中铀和降解TBP的机理研究
  • 批准号:
    12305387
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MOFs-藻渣生物炭复合材料强化废水低温发酵产氢耦合微藻油脂合成的效能与机制
  • 批准号:
    52376176
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向散化船洗舱废水在航处理的流化床类芬顿催化剂多尺度构筑及增效机制研究
  • 批准号:
    52301415
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Validating FilaChar Use in Wastewater Treatment
验证 FilaChar 在废水处理中的使用
  • 批准号:
    10106623
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Launchpad
Design and application of novel stimuli-responsive supramolecules to selectively separate cesium and strontium from radioactive wastewater
新型刺激响应超分子的设计与应用从放射性废水中选择性分离铯和锶
  • 批准号:
    24K15337
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Realizing Carbon Neutrality and Resource/Energy Self-sufficiency in Wastewater Treatment Plants by Integrating Three Functional Granular Sludges
通过整合三种功能的颗粒污泥实现污水处理厂的碳中和和资源/能源自给自足
  • 批准号:
    24H00767
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了