CAREER: Variational Inference for Resource-Efficient Learning
职业:资源高效学习的变分推理
基本信息
- 批准号:2047418
- 负责人:
- 金额:$ 44.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The power of Deep Learning (DL) comes with enormous energy and storage costs due to massive data needs and parameter-rich models. For example, recent models for natural language generation contain more than a hundred billion parameters and require huge amounts of training data. Training such a model can entail nearly five times the lifetime carbon dioxide emissions of the average American car. This project develops a holistic approach to resource-efficient DL based on a common set of methodologies: DL models and algorithms are viewed through the lens of information theory, making it possible to formally quantify and minimize the required resources. Outcomes of this project include new methods for the compression of both models (neural networks) and data (images and video), as well as new training algorithms for DL that reduce data requirements and improve runtime efficiency. These research activities will also inform summer teaching activities for under-represented students, lead to new open-source software for resource-efficient machine learning, as well as workshops and symposia on neural compression and statistical machine learning. In more detail, the project approaches resource-efficient machine learning from the perspective of variational inference (VI) and contains three thrusts that focus on different inefficiencies: (A) bandwidth inefficiency: a model's inefficient representation of data or parameters, (B) data inefficiency: a model's extensive need for training data, and (C) runtime inefficiency: a learning or inference algorithm's inability to produce desired answers within a given computational time budget. Thrust A draws on the connection between VI and rate-distortion theory to derive new neural compression algorithms with improved compression performance. Thrust B designs informative priors for effective learning with limited data in non-stationary environments. Finally, thrust C develops highly scalable training algorithms for Bayesian neural networks that hybridize Markov Chain Monte Carlo and VI, trading-off precision for convergence speed. The project contains applications from the domains of image and video compression as well as climate science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习的力量(DL)伴随着巨大的能量和存储成本,这是由于巨大的数据需求和富含参数的模型。例如,自然语言生成的最新模型包含超过一亿参数,需要大量的培训数据。培训这种模型可能需要美国普通汽车的终身二氧化碳排放量的近五倍。该项目基于一组共同的方法来开发一种对资源有效DL的整体方法:通过信息理论的镜头来查看DL模型和算法,从而可以正式量化和最小化所需的资源。该项目的结果包括用于压缩模型(神经网络)和数据(图像和视频)的新方法,以及针对DL的新培训算法,以降低数据需求并提高运行时效率。这些研究活动还将为代表性不足的学生提供夏季教学活动,从而为资源有效的机器学习提供新的开源软件,以及有关神经压缩和统计机器学习的研讨会和研讨会。 In more detail, the project approaches resource-efficient machine learning from the perspective of variational inference (VI) and contains three thrusts that focus on different inefficiencies: (A) bandwidth inefficiency: a model's inefficient representation of data or parameters, (B) data inefficiency: a model's extensive need for training data, and (C) runtime inefficiency: a learning or inference algorithm's inability to produce desired在给定的计算时间预算中的答案。推力A借鉴VI和速率延伸理论之间的连接,以推导新的神经压缩算法,并改善压缩性能。推力B设计在非平稳环境中使用有限的数据,可提供有效学习的知名度。最后,推力C开发了贝叶斯神经网络的高度可扩展的训练算法,该贝叶斯神经网络融合了马尔可夫链蒙特卡洛和VI,这是收敛速度的交易精度。该项目包含来自图像和视频压缩领域以及气候科学领域的应用。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supervised Compression for Resource- constrained Edge Computing Systems
资源受限边缘计算系统的监督压缩
- DOI:10.1109/wacv51458.2022.00100
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Matsubara, Y;Yang, R.;Mandt, S;Levorato, M.
- 通讯作者:Levorato, M.
Neural Transformation Learning for Deep Anomaly Detection Beyond Images
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Chen Qiu;Timo Pfrommer;M. Kloft;S. Mandt;Maja R. Rudolph
- 通讯作者:Chen Qiu;Timo Pfrommer;M. Kloft;S. Mandt;Maja R. Rudolph
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Yibo Yang;S. Mandt
- 通讯作者:Yibo Yang;S. Mandt
Probabilistic Querying of Continuous-Time Event Sequences
连续时间事件序列的概率查询
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Boyd, Alex;Chang, Yuxin;Mandt, Stephan;Smyth, Padhraic
- 通讯作者:Smyth, Padhraic
Latent Outlier Exposure for Anomaly Detection with Contaminated Data
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Chen Qiu;Aodong Li;M. Kloft;Maja R. Rudolph;S. Mandt
- 通讯作者:Chen Qiu;Aodong Li;M. Kloft;Maja R. Rudolph;S. Mandt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Mandt其他文献
Understanding and Visualizing Droplet Distributions in Simulations of Shallow Clouds
理解和可视化浅层云模拟中的液滴分布
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justus C. Will;A. M. Jenney;Kara D. Lamb;Michael S. Pritchard;Colleen Kaul;Po;Kyle Pressel;Jacob Shpund;M. Lier;Stephan Mandt - 通讯作者:
Stephan Mandt
Preserving Identity with Variational Score for General-purpose 3D Editing
通过通用 3D 编辑的变分保留同一性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Duong H. Le;Tuan Pham;Aniruddha Kembhavi;Stephan Mandt;Wei;Jiasen Lu - 通讯作者:
Jiasen Lu
Understanding precipitation changes through unsupervised machine learning
通过无监督机器学习了解降水量变化
- DOI:
10.1017/eds.2024.1 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
G. Mooers;T. Beucler;Mike Pritchard;Stephan Mandt - 通讯作者:
Stephan Mandt
Early-Exit Neural Networks with Nested Prediction Sets
具有嵌套预测集的提前退出神经网络
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Metod Jazbec;Patrick Forr'e;Stephan Mandt;Dan Zhang;Eric T. Nalisnick - 通讯作者:
Eric T. Nalisnick
Stephan Mandt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Mandt', 18)}}的其他基金
RI: Small: Deep Variational Data Compression
RI:小型:深度变分数据压缩
- 批准号:
2007719 - 财政年份:2020
- 资助金额:
$ 44.65万 - 项目类别:
Standard Grant
相似国自然基金
贝叶斯框架下基于变分推理的全波形反演速度建模及不确定性评价方法研究
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
贝叶斯框架下基于变分推理的全波形反演速度建模及不确定性评价方法研究
- 批准号:42274143
- 批准年份:2022
- 资助金额:56.00 万元
- 项目类别:面上项目
Wasserstein变分推理关键问题研究
- 批准号:62006094
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
高精度稳定的黑盒变分推理关键问题研究
- 批准号:61876071
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
面向宽带信号的新型贝叶斯稀疏重构理论与方法研究
- 批准号:61871421
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 44.65万 - 项目类别:
Continuing Grant
CAREER: Automatic Variational Inference
职业:自动变分推理
- 批准号:
2045900 - 财政年份:2021
- 资助金额:
$ 44.65万 - 项目类别:
Continuing Grant
CAREER: Stein Variational Gradient Descent: A New Foundation for Inference
职业生涯:斯坦因变分梯度下降:新的推理基础
- 批准号:
1846421 - 财政年份:2019
- 资助金额:
$ 44.65万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigations of Variational Inference
职业:变分推理的计算和理论研究
- 批准号:
1847590 - 财政年份:2019
- 资助金额:
$ 44.65万 - 项目类别:
Continuing Grant
CAREER: Entropy Geometry in Variational Inference Signal Processing
职业:变分推理信号处理中的熵几何
- 批准号:
1053702 - 财政年份:2011
- 资助金额:
$ 44.65万 - 项目类别:
Standard Grant