Collaborative Research: NRI: INT: Cooperative Underwater Structure Inspection and Mapping

合作研究:NRI:INT:合作水下结构检查和测绘

基本信息

项目摘要

This project develops a system of co-robots collaborating with a human operator to map underwater structures. Underwater structure mapping is an important capability applicable to multiple domains: marine archaeology, infrastructure maintenance, resource utilization, security, and environmental monitoring. The underwater environment is challenging and dangerous for humans in many aspects, while robotic operations face additional challenges compared to the above-water ones. In particular, both sensing and communications are restricted, and planning is required in three dimensions with limited information. The project will generate a 3D model of the underwater structure providing a high-resolution photo-realistic representation. Autonomous Underwater Vehicles (AUVs)will be operating in close cooperation, generating a dense vision-based reconstruction of the observed surface, and coordinated with remote human operators.. The project integrates research and education through training of undergraduate and graduate students, who will have the opportunity to work in an inclusive, interdisciplinary team across South Carolina, New Jersey, and New Hampshire. The system will be integrated and tested for archaeological mapping at field sites. Research will be conducted along three directions. (1) Robust underwater state estimation based on a deep learning approach and a hybrid representation for 3-D reconstruction that will encode probabilistic occupancy for both navigation and initial inspection from users. (2) Collaborative planning, for the proximal observers based on a local optimization framework that originally considers multiple criteria, including information gain, uncertainty reduction, and loop closure, active positioning of distal observers, and user preference to make joint measurements and inform proximal observers on where to go. (3) Information driven communications, with careful design of efficient data representation of the 3-D reconstruction and of a cross-layer optimization for deciding when and how to share. These three components will contribute towards the overarching goal of enabling a team of co-robots to operate autonomously and produce a realistic map of an underwater structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一个协作机器人系统,可与人类操作员协作绘制水下结构图。水下结构测绘是一项适用于多个领域的重要能力:海洋考古、基础设施维护、资源利用、安全和环境监测。水下环境对人类来说在很多方面都具有挑战性和危险性,而与水上环境相比,机器人操作面临着更多的挑战。特别是传感和通信都受到限制,需要在信息有限的情况下进行三维规划。该项目将生成水下结构的 3D 模型,提供高分辨率的逼真表示。自主水下航行器(AUV)将密切合作,对观察到的表面进行基于视觉的密集重建,并与远程人类操作员协调。该项目通过对本科生和研究生的培训将研究和教育结合起来,他们将拥有有机会在南卡罗来纳州、新泽西州和新罕布什尔州的包容性跨学科团队中工作。该系统将被集成并测试用于现场考古测绘。 研究将沿着三个方向进行。 (1) 基于深度学习方法和 3D 重建混合表示的鲁棒水下状态估计,它将对导航和用户初始检查的概率占用进行编码。 (2)协同规划,基于局部优化框架的近端观察者,该框架最初考虑了多种标准,包括信息增益、不确定性减少和闭环、远端观察者的主动定位以及用户偏好,以进行联合测量并通知近端观察者关于去哪里。 (3) 信息驱动的通信,仔细设计 3D 重建的有效数据表示以及决定何时以及如何共享的跨层优化。这三个组成部分将有助于实现使协作机器人团队能够自主操作并生成水下结构的真实地图的总体目标。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weakly Supervised Caveline Detection for AUV Navigation Inside Underwater Caves
水下洞穴内 AUV 导航的弱监督洞穴线检测
SM/VIO: Robust Underwater State Estimation Switching Between Model-based and Visual Inertial Odometry
SM/VIO:基于模型和视觉惯性里程计之间的鲁棒水下状态估计切换
SVIn2: A multi-sensor fusion-based underwater SLAM system
SVIn2:基于多传感器融合的水下SLAM系统
Hybrid Visual Inertial Odometry for Robust Underwater Estimation
用于稳健水下估计的混合视觉惯性里程计
  • DOI:
    10.23919/oceans52994.2023.10336994
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshi, Bharat;Bandara, Chanaka;Poulakakis, Ioannis;Tanner, Herbert G.;Rekleitis, Ioannis
  • 通讯作者:
    Rekleitis, Ioannis
Real-Time Dense 3D Mapping of Underwater Environments
水下环境的实时密集 3D 测绘
  • DOI:
    10.1109/icra48891.2023.10160266
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Weihan;Joshi, Bharat;Burgdorfer, Nathaniel;Batsos, Konstantinos;Quattrini Li, Alberto;Mordohai, Philippos;Rekleitis, Ioannis
  • 通讯作者:
    Rekleitis, Ioannis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ioannis Rekleitis其他文献

Use of an Autonomous Surface Vehicle to Collect High Spatial Resolution Water Quality Data at Lake Wateree, SC
使用自主地面车辆收集南卡罗来纳州沃特利湖的高分辨率空间分辨率水质数据
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Archana Venkatachari;Annie Bourbonnais;Ibrahim Salman;Ioannis Rekleitis;Alberto Quattrini Li;Kathryn Cottingham;Holly Ewing;Denise Bruesewitz;Emily Arsenault;Quin K. Shingai
  • 通讯作者:
    Quin K. Shingai
Caveline Detection at the Edge for Autonomous Underwater Cave Exploration and Mapping
边缘洞穴线检测,用于自主水下洞穴探索和测绘
Optimizing Autonomous Sampling for Improved Detection of Dissolved Nitrogen Inputs Sustaining Harmful Cyanobacterial Blooms in Freshwater Lakes
优化自主采样以改进对维持淡水湖中有害蓝藻水华的溶解氮输入的检测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ibrahim Salman;Dalton Hite;Annie Bourbonnais;Ioannis Rekleitis
  • 通讯作者:
    Ioannis Rekleitis
Motion Planning by Sampling in Subspaces of Progressively Increasing Dimension
通过在维度逐渐增加的子空间中采样进行运动规划
  • DOI:
    10.1007/s10846-020-01217-w
  • 发表时间:
    2020-07-27
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. Xanthidis;J. Esposito;Ioannis Rekleitis;Jason M. O'Kane
  • 通讯作者:
    Jason M. O'Kane

Ioannis Rekleitis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ioannis Rekleitis', 18)}}的其他基金

CAREER: Enabling Autonomy via Enhanced Situational Awareness for Underwater Robotics
职业:通过增强水下机器人的态势感知实现自主性
  • 批准号:
    1943205
  • 财政年份:
    2020
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Continuing Grant
NRI: Enhancing Mapping Capabilities of Underwater Caves using Robotic Assistive Technology
NRI:利用机器人辅助技术增强水下洞穴的测绘能力
  • 批准号:
    1637876
  • 财政年份:
    2016
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
II-New: A Heterogeneous Team of Field Robots for Research into Coordinated Monitoring of Coastal Environments
II-新:用于研究沿海环境协调监测的异构现场机器人团队
  • 批准号:
    1513203
  • 财政年份:
    2015
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了