CAREER: Distributionally Robust Learning, Control, and Benefits Analysis of Information Sharing for Connected and Autonomous Vehicles

职业:互联和自动驾驶车辆信息共享的分布式鲁棒学习、控制和效益分析

基本信息

  • 批准号:
    2047354
  • 负责人:
  • 金额:
    $ 50.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

The rapid evolution of ubiquitous sensing, communication, and computation technologies has contributed to the revolution of cyber-physical systems (CPS). Learning-based methodologies are integrated to the control of physical systems and demonstrating impressive performance in many CPS domains and connected and autonomous vehicles (CAVs) system is one such example with the development of vehicle-to-everything communication technologies. However, existing literature still lacks understanding of the tridirectional relationship among communication, learning, and control. The main challenges to be solved include (1) how to model dynamic system state and state uncertainties with shared information, (2) how to make robust learning and control decisions under model uncertainties, (3) how to integrate learning and control to guarantee the safety of networked CPS, and (4) how to quantify the benefits of communication.To address these challenges, this CAREER proposal aims to design integrated communication, learning, and control rules that are robust to hybrid system model uncertainties for safe operation and system efficiency of CAVs. The key intellectual merit is the design of integrated distributionally robust multi-agent reinforcement learning (DRMARL) and control framework with rigorous safety guarantees, considering hybrid system state uncertainties predicted with shared information, and the development of scientific foundation for analyzing and quantifying the benefits of communication. The fundamental theory and algorithm principles will be validated using simulators, small-scale testbeds, and full-scale CAVs field demonstrations, to form a new framework for future connectivity, learning, and control of CAVs and networked CPS. The technical contributions are as follows. (1). With shared information, we will design a cooperative prediction algorithm to improve hybrid system state and model uncertainty representations needed by learning and control. (2). Given enhanced prediction, we will design an integrated DRMARL and control framework with rigorous safety guarantee, and a computationally tractable algorithm to calculate the hybrid system decision-making policy. This integrates the strengths of both learning and control to improve system safety and efficiency. (3). We will define formally and quantify the value of communication given and propose a novel learn to communicate approach, to utilize learning and control to improve the communication actions. This project will also integrate an educational plan with the research goals by developing a learning platform of ``ssCAVs'' as an education tool and new interdisciplinary courses on “learning and control”, undertaking outreach to the general public and K-12 students and teachers, and directly involving high-school scholars, undergraduate and graduate students in research. This project is in response to the NSF CAREER 20-525 solicitation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无处不在的敏感性,通信和计算技术的快速演变有助于网络物理系统(CPS)的革命。基于学习的方法集成到对物理系统的控制,并在许多CPS域中证明了令人印象深刻的性能,并且连接和自动驾驶汽车(CAVS)系统就是一个这样的例子,即开发了所有设施通信技术。但是,现有文献仍然缺乏对沟通,学习和控制之间的三个方向关系的了解。 The main challenges to be solved include (1) how to model dynamic system state and state uncertainties with shared information, (2) how to make robust learning and control decisions under model uncertainties, (3) how to integrate learning and control to guarantee the safety of networked CPS, and (4) how to quantify the benefits of communication.To address these challenges, this CAREER proposal aims to design integrated communication, learning, and control rules that are robust to hybrid system model骑士的安全操作和系统效率的不确定性。关键的智力优点是设计综合分布强大的多代理增强学习(DRMARL)和具有严格安全保证的控制框架的设计,考虑到混合系统状态状态状态不确定性与共享信息预测,以及开发科学基础,用于分析和量化交流的收益。基本理论和算法原理将使用模拟器,小规模的测试床和全尺寸的CAVS现场演示进行验证,以形成一个新的框架,以实现未来的连通性,学习和控制CAVS和网络CPS的控制。技术贡献如下。 (1)。借助共享的信息,我们将设计一种合作预测算法,以改善学习和控制所需的混合系统状态和模型不确定性表示。 (2)。给定增强的预测,我们将设计一个具有严格安全保证的集成的DRMARL和控制框架,以及一种可计算障碍的算法来计算混合系统决策政策。这整合了学习和控制的优势,以提高系统的安全性和效率。 (3)。我们将正式定义并量化给定的交流的价值,并提出一种新颖的学习方法来交流方法,以利用学习和控制来改善交流行动。该项目还将通过开发一个“ SSCAVS”的学习平台作为教育工具和有关“学习和控制”的新跨学科课程,向公众和K-12学生和老师进行宣传,并直接涉及高中学者,研究生不足的研究生,将教育计划与研究目标整合在一起。该项目是对NSF职业20-525征集的回应。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估,以诚实的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of Connected Autonomous Vehicles in Challenging Scenarios
Stable and Efficient Shapley Value-Based Reward Reallocation for Multi-Agent Reinforcement Learning of Autonomous Vehicles
A Multi-Agent Reinforcement Learning Approach for Safe and Efficient Behavior Planning of Connected Autonomous Vehicles
  • DOI:
    10.1109/tits.2023.3336670
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Songyang Han;Shangli Zhou;Jiangwei Wang;Lynn Pepin;Caiwen Ding;Jie Fu;Fei Miao
  • 通讯作者:
    Songyang Han;Shangli Zhou;Jiangwei Wang;Lynn Pepin;Caiwen Ding;Jie Fu;Fei Miao
Robust Multi-Agent Reinforcement Learning with Adversarial State Uncertainties
具有对抗性状态不确定性的鲁棒多智能体强化学习
Data-Driven Distributionally Robust Electric Vehicle Balancing for Autonomous Mobility-on-Demand Systems Under Demand and Supply Uncertainties
  • DOI:
    10.1109/tits.2023.3237804
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Sihong He;Zhili Zhang;Shuo Han;Lynn Pepin;Guang Wang;Desheng Zhang;J. Stankovic;Fei Miao
  • 通讯作者:
    Sihong He;Zhili Zhang;Shuo Han;Lynn Pepin;Guang Wang;Desheng Zhang;J. Stankovic;Fei Miao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Miao其他文献

Utility of stereo-electroencephalography recording guided by magnetoencephalography in the surgical treatment of epilepsy patients with negative magnetic resonance imaging results
脑磁图引导下立体脑电图记录在磁共振成像阴性癫痫患者手术治疗中的应用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Wei Liu;Shuaiwei Tian;Jing Zhang;Peng Huang;Tao Wang;Yulei Deng;Xiaoying Liu;Fei Miao;Bomin Sun;Shikun Zhan
  • 通讯作者:
    Shikun Zhan
Application of fiber Bragg grating sensor network in aluminum reduction tank shell temperature monitoring
光纤布拉格光栅传感器网络在铝电解槽罐体温度监测中的应用
  • DOI:
    10.1007/s11771-013-1567-y
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Qing-mei Sui;Fei Miao;Lei Jia;Peng Peng
  • 通讯作者:
    Peng Peng
Artificial invariant subspace with potential functions for humanoid robot balancing
具有人形机器人平衡潜在函数的人工不变子空间
Robust taxi dispatch under model uncertainties
模型不确定性下的稳健出租车调度
The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis
RNA 结合蛋白 QKI5 在红细胞生成过程中通过远端 RNA 基序调节初级 miR-124-1 加工
  • DOI:
    10.1038/cr.2017.26
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    44.1
  • 作者:
    Fang Wang;Wei Song;Hongmei Zhao;Yanni Ma;Yuxia Li;Di Zhai;Lei Dong;Rui Su;Mengmeng Zhang;Yong Zhu;Xiaoxia Ren;Fei Miao;Wenjie Liu;Feng Li;Junwu Zhang;Aibin He;Ge Shan;Jingyi Hui;Linfang Wang;Jia Yu
  • 通讯作者:
    Jia Yu

Fei Miao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Miao', 18)}}的其他基金

S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849246
  • 财政年份:
    2019
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
CPS: Small: Collaborative Research: Improving Efficiency of Electric Vehicle Fleets: A Data-Driven Control Framework for Heterogeneous Mobile Cyber Physical Systems
CPS:小型:协作研究:提高电动汽车车队的效率:异构移动网络物理系统的数据驱动控制框架
  • 批准号:
    1932250
  • 财政年份:
    2019
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant

相似国自然基金

时变环境下基于客流均衡分配的公交时刻表优化研究
  • 批准号:
    72371205
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
硫化物饱和条件下Cu、Mo在流体-熔体间分配行为的实验研究
  • 批准号:
    42303074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
青海湖候鸟栖息地鸟羽甲基汞的富集、传输及再分配
  • 批准号:
    42377266
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于恒稳态分配理论的寒冷地区多介质逸度模型的构建及其用于我国东北地区PBDEs的研究
  • 批准号:
    42377377
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
公平性考量下的资源汇集与分配问题研究
  • 批准号:
    72301240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Dynamic Decision-Making Under Uncertainty via Distributionally Robust Optimization
职业:通过分布稳健优化在不确定性下进行动态决策
  • 批准号:
    2342505
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
Distributionally Robust Adaptive Control: Enabling Safe and Robust Reinforcement Learning
分布式鲁棒自适应控制:实现安全鲁棒的强化学习
  • 批准号:
    2135925
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
CAREER: Incorporating Decision-Dependent Uncertainty via Distributionally Robust Optimization: Models, Solution Approaches, and Applications
职业:通过分布稳健优化纳入决策相关的不确定性:模型、解决方案和应用
  • 批准号:
    1845980
  • 财政年份:
    2019
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了