CAREER: Quantum Size Effects on Thermal Radiation
职业:量子尺寸对热辐射的影响
基本信息
- 批准号:2046630
- 负责人:
- 金额:$ 52.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum-scale (i.e., nanometer and sub-nanometer scale) materials exhibit thermal radiation properties that are significantly different from ordinary bulk materials. This phenomenon is caused by the change in the electronic band structure of the materials at the quantum scale. Thermal radiation of quantum materials can be engineered for highly efficient waste heat recovery using nano-gap thermophotovoltaics as well as for radiative cooling and smart windows. Additionally, thermal radiation at the quantum scale has significant impact on thermal management of transistors and ultra-compact electronics. Despite this significance, how thermal radiation is emitted and exchanged at the quantum level is not well understood. This project will elucidate the fundamental mechanisms underlying thermal radiation in the quantum regime. This research can lead to technological breakthroughs in energy harvesting and conservation. This will impact society by conserving limited energy resources and protecting the environment. Students with disabilities, female students from rural areas of Maine, and high school teachers will be directly involved in this research. A new course and three lab sessions on radiative heat transfer will be developed at the principal investigator’s department.Quantum size effects on thermal radiation are significant for two chief reasons. First, optical and electronic (and thus thermal radiative) properties of quantum materials (i.e., materials that are engineered at the atomic length scale) can differ drastically from bulk materials. This opens up a great opportunity for designing materials with tailored thermal radiative properties beyond the fluctuational-electrodynamics regime. Second, radiative heat transfer at the atomic length scale can play a significant role in thermal management of devices such as transistors, ultra-compact circuits, quantum computers, solar cells, and medical imagers. At atomic scale separation gaps, quantum size effects such as phonon and electron tunneling arise. These effects can modify radiative heat transfer compared to the fluctuational electrodynamics predictions. Although the effect of phonon tunneling on radiative heat transfer between two dielectric media has been studied, radiative heat transfer between metallic media in the presence of electron tunneling is not fully understood. This research project will elucidate quantum size effects on thermal radiation by (1) establishing a theoretical framework for modeling thermal radiation of quantum materials, (2) a theoretical study of thermal radiation by quantum materials of different dimensions, (3) experimental demonstration of quantum size effects on the magnitude and the spectrum of thermal emission, and (4) studying the effect of electron tunneling on radiative heat transfer at quantum-scale separation gaps.This project is jointly funded by the Thermal Transport Processes Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子尺度(即纳米和亚纳米尺度)材料暴露的热辐射特性与普通散装材料显着不同。这种现象是由质量尺度的材料的电子带结构的变化引起的。量子材料的热辐射可以设计用于使用纳米间隙热伏尔托克斯以及辐射冷却和智能窗户的高效废热恢复。另外,量子尺度的热辐射对晶体管和超紧凑电子电子的热管理有重大影响。尽管有这种意义,但在量子水平上发射和改变热辐射的方式尚未得到充分了解。该项目将阐明量子状态中热辐射的基本机制。这项研究可以导致能源收集和保护方面的技术突破。这将通过保护有限的能源资源和保护环境来影响社会。残疾学生,来自缅因州粗糙地区的女学生以及高中老师将直接参与这项研究。在首席研究者的部门将开发一个新课程和三个实验室会议。量子大小对热辐射的影响很大,有两个主要原因。首先,量子材料(即在原子长度尺度上设计的材料)的光学和电子(因此是热辐射)性质可能与散装材料截然不同。这为设计具有量身定制的热辐射特性的材料开辟了一个绝佳的机会,这是在动力 - 电动动力学制度之外的。其次,原子长度尺度上的辐射传热可以在晶体管,超紧凑电路,量子计算机,太阳能电池和医学图像等设备的热管理中发挥重要作用。在原子尺度的分离间隙下,会出现量子大小效应,例如声子和电子隧道。与波动电子预测相比,这些影响可以改变辐射传热。尽管已经研究了声子隧道对两种饮食介质之间辐射热传递的影响,但在存在电子隧道的情况下,金属介质之间的辐射传热尚不完全了解。 This research project will Elucidate quantum size effects on thermal radiation by (1) establishing a theoretical framework for modeling thermal radiation of quantum materials, (2) a theoretical study of thermal radiation by quantum materials of different dimensions, (3) experimental demonstration of quantum size effects on the magnitude and the spectrum of thermal emission, and (4) studying the effect of electron tunneling on radioactive heat transfer at quantum-scale separation GAPS。该项目由热运输过程计划和刺激竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法定任务,并通过评估该基金会的知识分子优点和更广泛的影响来审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of nonlocal electrical conductivity on near-field radiative heat transfer between graphene sheets
- DOI:10.1103/physrevb.105.125416
- 发表时间:2022-03
- 期刊:
- 影响因子:3.7
- 作者:Saman Zare;Behrad Zeinali Tajani;Sheila Edalatpour
- 通讯作者:Saman Zare;Behrad Zeinali Tajani;Sheila Edalatpour
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheila Edalatpour其他文献
Near-field thermal emission by periodic arrays.
- DOI:
10.1103/physreve.99.063308 - 发表时间:
2018-12 - 期刊:
- 影响因子:0
- 作者:
Sheila Edalatpour - 通讯作者:
Sheila Edalatpour
Spectral redshift of the thermal near field scattered by a probe
探头散射的热近场的光谱红移
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Sheila Edalatpour;V. Hatamipour;M. Francoeur - 通讯作者:
M. Francoeur
Apparent Spectral Shift of Thermally Generated Surface Phonon-Polariton Resonance Mediated by a Nonresonant Film
非共振薄膜介导的热产生表面声子极化子共振的表观光谱偏移
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.6
- 作者:
V. Hatamipour;Sheila Edalatpour;M. Francoeur - 通讯作者:
M. Francoeur
Sheila Edalatpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheila Edalatpour', 18)}}的其他基金
Characterization of Near-Field Thermal Radiative Properties of Man-Made Materials
人造材料近场热辐射特性的表征
- 批准号:
1804360 - 财政年份:2018
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
相似国自然基金
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
- 批准号:12374385
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高量子产率(>90%)大尺寸InP基核壳结构量子点构筑高效长寿命绿光电致发光器件
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超薄三维拓扑绝缘体的有限尺寸效应和量子自旋霍尔态的探测
- 批准号:12274445
- 批准年份:2022
- 资助金额:56.00 万元
- 项目类别:面上项目
钙钛矿魔幻尺寸团簇多层次结构稳定性及其光量子研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding the Size Effects on Spin-mediated Thermal Transport in Nanostructured Quantum Magnets
职业:了解纳米结构量子磁体中自旋介导的热传输的尺寸效应
- 批准号:
2144328 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Detailed Characterization of Graphene Quantum Dots of Controlled Size, Shape and Chemistry
职业:控制尺寸、形状和化学性质的石墨烯量子点的详细表征
- 批准号:
1503681 - 财政年份:2014
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
CAREER: Detailed Characterization of Graphene Quantum Dots of Controlled Size, Shape and Chemistry
职业:控制尺寸、形状和化学性质的石墨烯量子点的详细表征
- 批准号:
1054877 - 财政年份:2011
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
CAREER: Minority Carrier Transport in Wide Bandgap Semiconductor Nanowires: Classical and Quantum Size Effects
职业:宽带隙半导体纳米线中的少数载流子传输:经典和量子尺寸效应
- 批准号:
0845007 - 财政年份:2009
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant