CAREER: Mitigating Detrimental Vibrational Effects in Organic Semiconductors
职业:减轻有机半导体中的有害振动影响
基本信息
- 批准号:2046483
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organic semiconductors are a promising class of materials with the potential to revolutionize advanced electronic devices, from flexible displays to high-efficiency solar cells. Their widespread use is currently limited by atomic-level motions that, in many cases, reduce the effectiveness of the material. In this project, these motions – specifically those that occur at terahertz frequencies – will be investigated using a combined experimental and computational approach. The PI will investigate and quantify the precise dynamics that influence the performance of organic semiconducting materials with atomic-level precision. Through this research an unprecedented level of insight will be gained, which translates to the ability to rationally engineer new materials that suppress detrimental phenomena. This research is strongly connected to the training and education of young scientists, with trainees directly involved in the research from all career stages, from undergraduates to postgraduates. In addition, the PI will develop a university-level course that incorporates the results of this research in order to further enhance the training of young scientists. The trainees involved in the research, in conjunction with the PI, are also directly involved in efforts to communicate this cutting-edge research to the wider community. Through a collaboration with a local art museum, the PI is working to expand the reach of the developed methods to aid in the characterization, identification, and preservation of artwork in their collections. This is extended to K-12 education through a partnership with a local school district, where workshops and training opportunities are offered, providing a convergence of cutting-edge research with the development of the next generation of STEM professionals.The role that low-frequency (terahertz) dynamics play in a wide-variety of bulk phenomena in organic semiconductors has been elucidated in recent years. Specifically, large-amplitude vibrational motions occurring at terahertz frequencies have been shown to be pivotal to rationalizing the charge-carrier dynamics of these materials. In many cases, detrimental electron-phonon coupling from a single-terahertz vibration is sufficient to significantly reduce charge-carrier mobility, a critical parameter for realizing advanced electronics. This research leverages experimental terahertz time-domain spectroscopy with quantum mechanical simulations to explore the crucial role that terahertz phonons play on the properties of organic semiconducting solids. This project involves the design and implementation of new experimental and theoretical methods – methods that are also applicable to solid-state materials in general. Specifically, optical pump-terahertz probe spectroscopy is used to directly sample both charge-carrier dynamics, as well as electron-phonon coupling, while anharmonic density functional theory simulations are performed to predict temperature- and pressure-dependent properties. The results of these experiments are used to rationally design new materials, using experimental organic synthetic methods as well as computational crystal structure design. This research also integrates multiple educational activities that are a benefit to a wide cross-section of society, including future STEM leaders and the non-scientific community. Through a collaboration with the Fleming Museum of Art, terahertz imaging methods are applied to reveal hidden features in artwork, such as a signature obscured by layers of paint. An exhibit based on this research is planned to be put on display at the museum, along with workshops for the general community and K-12 students. Additionally, a new course for advanced undergraduates and graduate students is being developed based on this project, which will translate to growing expertise in this important area of the materials sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有机半导体是一种有望的材料类别,具有从柔性显示器到高效太阳能电池的革新高级电子设备的潜力。目前,它们的宽度使用受原子级动作的限制,在许多情况下,这些动作降低了材料的有效性。在这个项目中,将使用合并的实验和计算方法研究这些运动 - 特别是在Terahertz频率上发生的动作。 PI将研究和量化以原子级精度影响有机半导体材料的性能的精确动力学。通过这项研究,将获得前所未有的见解水平,这转化为能够理性地设计抑制有害现象的新材料的能力。这项研究与对年轻科学家的培训和教育密切相关,学员直接参与了从本科生到研究生的所有职业阶段的研究。此外,PI将开发一门大学级课程,该课程结合了这项研究的结果,以进一步增强对年轻科学家的培训。参与研究的学员与PI结合,也直接参与了将这项尖端研究与更广泛社区传达的努力。通过与当地艺术博物馆的合作,PI正在努力扩大开发方法的覆盖范围,以帮助其收藏中的艺术品进行表征,识别和保存。这将通过与当地学区的合作伙伴关系扩展到K-12教育,在那里提供了研讨会和培训机会,从而提供了下一代STEM专业人员的发展,从而提供了尖端研究的融合。低频(Terahertz)动态在广泛的庞大现象中的作用在有机半径上是在很大程度上播放的,这是有机物中的大量现象。发生在Terahertz频率上的发生是合理化这些材料的电荷载体动力学的关键。在许多情况下,单毛赫兹振动的有害电子 - 音波耦合足以显着降低电荷载流子迁移率,这是实现高级电子产品的关键参数。这项研究利用实验性的Terahertz时间域光谱和量子机械模拟来探讨Terahertz Phonon在有机半导体固体的性质中发挥的关键作用。该项目涉及新的实验和理论方法的设计和实施 - 通常适用于固态材料的方法。具体而言,光学泵 - terahertz探针光谱用于直接采样电荷 - 载体动力学以及电子 - 音波耦合,同时进行了非谐波密度函数理论模拟,以预测温度依赖性和压力依赖性性质。这些实验的结果使用实验性有机合成方法以及计算晶体结构设计,用于合理设计新材料。这项研究还整合了多种教育活动,这些活动对社会的广泛横向有利,包括未来的STEM领导者和非科学社区。通过与弗莱明艺术博物馆的合作,使用Terahertz成像方法来揭示艺术品中的隐藏特征,例如被油漆层遮盖的标志性。计划在博物馆展示基于这项研究的展览,以及一般社区和K-12学生的研讨会。此外,正在根据该项目开发针对高级本科生和研究生的新课程,该课程将转化为材料科学这一重要领域的越来越多的专业知识。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和广泛影响的审查标准来通过评估来评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Side-chain torsional dynamics strongly influence charge transport in organic semiconductors
侧链扭转动力学强烈影响有机半导体中的电荷传输
- DOI:10.1039/d2cc04979a
- 发表时间:2022
- 期刊:
- 影响因子:4.9
- 作者:Banks, Peter A.;Dyer, Adam M.;Whalley, Adam C.;Ruggiero, Michael T.
- 通讯作者:Ruggiero, Michael T.
Advances in Low-Frequency Vibrational Spectroscopy and Applications in Crystal Engineering
- DOI:10.1021/acs.cgd.1c00850
- 发表时间:2021-10
- 期刊:
- 影响因子:3.8
- 作者:Elyse M. Kleist;M. Ruggiero
- 通讯作者:Elyse M. Kleist;M. Ruggiero
Investigating the function and design of molecular materials through terahertz vibrational spectroscopy
- DOI:10.1038/s41570-023-00487-w
- 发表时间:2023-04-21
- 期刊:
- 影响因子:36.3
- 作者:Banks, Peter A.;Kleist, Elyse M.;Ruggiero, Michael T.
- 通讯作者:Ruggiero, Michael T.
Lattice Dynamics: The Unexplored Multidimensional Dynamic Playground of Molecular Crystalline Materials
晶格动力学:分子晶体材料的未探索的多维动态游乐场
- DOI:10.1021/acs.cgd.4c00226
- 发表时间:2024
- 期刊:
- 影响因子:3.8
- 作者:Catalano, Luca;Hutchins, Kristin M.;Bardeen, Christopher J.;Ruggiero, Michael T.
- 通讯作者:Ruggiero, Michael T.
Anharmonic Coupling of Stretching Vibrations in Ice: A Periodic VSCF and VCI Description
冰中拉伸振动的非谐耦合:周期性 VSCF 和 VCI 描述
- DOI:10.1021/acs.jctc.2c00217
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:Schireman, Raymond G.;Maul, Jefferson;Erba, Alessandro;Ruggiero, Michael T.
- 通讯作者:Ruggiero, Michael T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ruggiero其他文献
A Motion-Activated Video Game for Prevention of Substance Use Disorder Relapse in Youth: Pilot Randomized Controlled Trial (Preprint)
用于预防青少年药物滥用障碍复发的动作激活视频游戏:试点随机对照试验(预印本)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
L. Abroms;M. Fishman;H. Vo;Shawn C Chiang;Victoria Somerville;Lawrence Rakhmanov;Michael Ruggiero;D. Greenberg - 通讯作者:
D. Greenberg
Michael Ruggiero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ruggiero', 18)}}的其他基金
Collaborative: Terahertz Spectroscopy of Clathrates
合作:包合物的太赫兹光谱
- 批准号:
2346689 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Mitigating Detrimental Vibrational Effects in Organic Semiconductors
职业:减轻有机半导体中的有害振动影响
- 批准号:
2348765 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative: Terahertz Spectroscopy of Clathrates
合作:包合物的太赫兹光谱
- 批准号:
2055402 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Acquisition of a Tip-Enhanced Nano Raman Spectroscopy (TERS) Microscope for Soft Matter Research and Education
MRI:购买尖端增强纳米拉曼光谱 (TERS) 显微镜用于软物质研究和教育
- 批准号:
1919610 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经干细胞外泌体传递YBX1调控ANXA2稳定性缓解脑缺血再灌注损伤机制研究
- 批准号:82360386
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
电针激活大麻素CB1受体抑制mPFC–LS环路缓解应激性焦虑的机制
- 批准号:82374584
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
莱菔硫烷通过调控犬尿氨酸代谢缓解抑郁行为的作用和机制研究
- 批准号:82304145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
- 批准号:
MR/X036235/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Fellowship
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant