CAREER: An adaptive framework to accelerate real-time workloads in heterogeneous and reconfigurable environments
职业:一个自适应框架,可在异构和可重新配置的环境中加速实时工作负载
基本信息
- 批准号:2046444
- 负责人:
- 金额:$ 53.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence and machine learning are enabling real-time decisions based on live data for interactive scientific discovery and mission critical applications such as autonomous driving and smart grid. They are increasingly powered by heterogeneous and even reconfigurable accelerators. The reconfigurability and heterogeneity of accelerators, together with stringent performance requirements and complex dependencies in real-time workloads, bring daunting operational challenges. These issues, if left unaddressed, would slow down scientific discovery and waste lots of computing resources and energy. This project will develop a heterogeneity and reconfigurability aware framework to accelerate real-time artificial intelligence and machine learning without hurting other workloads. It will benefit the society by improving the efficiency of costly computing systems, which saves taxpayers' money and better utilize existing investments. Real-time artificial intelligence and machine learning powered by the framework can better serve the society, e.g., accelerating scientific discovery and enabling data-driven control. The project will bring innovative education, outreach and training opportunities for both academic and industrial participants to train the next generation of researchers and practitioners for the society.Today, managing heterogeneous and reconfigurable systems for diverse workloads with high resource utilization and performance guarantee is an extremely challenging task. This project will design and implement an adaptive framework which automatically detects, profiles, and analyzes both workloads and accelerators on the fly. Based on the information, it adaptively reconfigures them to match resource capabilities with workload needs. Global and local optimization will be used to accommodate multiple types of workloads and the configuring, partitioning, placement, scheduling, and execution of models in each workload. The developed framework will provide provable performance even with partial information in unknown environments, which is urgently needed due to the ever increasing system complexity and volatility in workloads. Novel global resource allocation policies will be developed based on optimization techniques in this project to provide performance guarantee such as fairness, strategyproofness, and Pareto efficiency. Throughout the project, a reciprocal methodology is envisioned: the framework accelerates artificial intelligence/machine learning workloads and artificial intelligence/machine learning techniques enable the framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能和机器学习正在启用基于实时数据的实时决策,以进行交互式科学发现和任务关键应用,例如自动驾驶和智能电网。它们越来越多地由异质甚至可重构的加速器提供动力。加速器的可重构性和异质性,以及在实时工作负载中的严格绩效要求和复杂的依赖性,带来了艰巨的操作挑战。这些问题,如果没有解决,将减慢科学发现并浪费大量计算资源和能源。该项目将开发出异质性和可重新配置的意识框架,以加速实时人工智能和机器学习,而不会损害其他工作量。它将通过提高昂贵的计算系统的效率来使社会受益,从而节省纳税人的资金并更好地利用现有投资。由框架提供支持的实时人工智能和机器学习可以更好地为社会服务,例如,加速科学发现并启用数据驱动的控制。该项目将为学术和工业参与者带来创新的教育,推广和培训机会,以培训社会的下一代研究人员和从业人员。该项目将设计和实施一个自适应框架,该框架会自动检测,配置文件和分析工作负载和加速器。根据信息,它可以自适应地重新配置它们,以将资源功能与工作负载需求匹配。全局和本地优化将用于容纳多种类型的工作负载以及每个工作负载中模型的配置,分区,安排,调度和执行。即使在未知环境中有部分信息,开发的框架也将提供可证明的性能,由于工作负载中的系统复杂性和波动性的增加,因此迫切需要这种信息。新型的全球资源分配策略将基于该项目的优化技术制定,以提供绩效保证,例如公平,防止策略性和帕累托效率。在整个项目中,设想了一种相互的方法:框架加速了人工智能/机器学习工作负载和人工智能/机器学习技术可以实现框架。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来支持的,这是值得的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning-Assisted Online Task Offloading for Latency Minimization in Heterogeneous Mobile Edge
- DOI:10.1109/tmc.2023.3285882
- 发表时间:2024-05
- 期刊:
- 影响因子:7.9
- 作者:Yu Liu;Yingling Mao;Z. Liu;Yuanyuan Yang
- 通讯作者:Yu Liu;Yingling Mao;Z. Liu;Yuanyuan Yang
Applied Online Algorithms with Heterogeneous Predictors
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Jessica Maghakian;Russell Lee;M. Hajiesmaili;Jian Li;R. Sitaraman;Zhenhu Liu
- 通讯作者:Jessica Maghakian;Russell Lee;M. Hajiesmaili;Jian Li;R. Sitaraman;Zhenhu Liu
Online Container Scheduling for Data-intensive Applications in Serverless Edge Computing
- DOI:10.1109/infocom53939.2023.10229034
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xiaojun Shang;Yingling Mao;Yu Liu;Yaodong Huang;Zhen Liu;Yuanyuan Yang
- 通讯作者:Xiaojun Shang;Yingling Mao;Yu Liu;Yaodong Huang;Zhen Liu;Yuanyuan Yang
Joint Task Offloading and Resource Allocation in Heterogeneous Edge Environments
- DOI:10.1109/infocom53939.2023.10229015
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Yu Liu;Yingling Mao;Z. Liu;Fan Ye;Yuanyuan Yang
- 通讯作者:Yu Liu;Yingling Mao;Z. Liu;Fan Ye;Yuanyuan Yang
Energy-Aware Online Task Offloading and Resource Allocation for Mobile Edge Computing
- DOI:10.1109/icdcs57875.2023.00073
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Yu Liu;Yingling Mao;Xiaojun Shang;Z. Liu;Yuanyuan Yang
- 通讯作者:Yu Liu;Yingling Mao;Xiaojun Shang;Z. Liu;Yuanyuan Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenhua Liu其他文献
Online Cloud Resource Provisioning Under Cost Budget for QoS Maximization
成本预算下的在线云资源配置,实现 QoS 最大化
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yu Liu;Niangjun Chen;Zhenhua Liu;Yuanyuan Yang - 通讯作者:
Yuanyuan Yang
One-Carbon Vitamins, Epigenetic/Genetic Integrity and Colon Cancer:Research is Needed to Understand the Effect on Tumorigenic Signaling Pathways
一碳维生素、表观遗传/遗传完整性和结肠癌:需要研究以了解其对致瘤信号通路的影响
- DOI:
10.4172/2167-0390.1000e112 - 发表时间:
2012 - 期刊:
- 影响因子:3.9
- 作者:
Zhenhua Liu - 通讯作者:
Zhenhua Liu
Efficacy of second-line ICIs combined with TKIs among patients with metastatic renal cell carcinoma: a real-world study.
二线 ICI 联合 TKI 对转移性肾细胞癌患者的疗效:一项真实世界研究。
- DOI:
10.2217/imt-2021-0108 - 发表时间:
2022 - 期刊:
- 影响因子:2.8
- 作者:
Haoran Zhang;Junru Chen;Xingming Zhang;Xudong Zhu;Zilin Wang;G. Sun;Jiayu Liang;Yuntian Chen;Yali Shen;Jiyan Liu;Xiang Li;Q. Wei;Zhenhua Liu;H. Zeng;P. Shen - 通讯作者:
P. Shen
Reductively dissociable biomimetic nanoparticles for control of integrin-coupled inflammatory signaling to retard atherogenesis.
可还原解离的仿生纳米颗粒用于控制整合素偶联的炎症信号传导以延缓动脉粥样硬化形成
- DOI:
10.1039/c9cc06039a - 发表时间:
2019 - 期刊:
- 影响因子:4.9
- 作者:
Wen Gao*;Huazhen Yang;Xianghua Liu;Zhenhua Liu;Lili Tong;Yuhui Sun;Wenhua Cao;Yujie Cao;Bo Tang* - 通讯作者:
Bo Tang*
Zhenhua Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenhua Liu', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
- 批准号:
2146909 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications
合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用
- 批准号:
2106027 - 财政年份:2021
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Enabling Application-Level Performance Predictability in Public Clouds
NeTS:小型:协作研究:在公共云中实现应用程序级性能可预测性
- 批准号:
1617698 - 财政年份:2016
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
CRII: NeTS: Enabling Demand Response from Cloud Data Centers -- from Sustainable IT to IT for Sustainability
CRII:NeTS:实现云数据中心的需求响应——从可持续 IT 到 IT 促进可持续发展
- 批准号:
1464388 - 财政年份:2015
- 资助金额:
$ 53.31万 - 项目类别:
Standard Grant
相似国自然基金
基于理论域框架的社区老年人即时自适应性运动干预模式研究
- 批准号:72374014
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
三维动态自适应网格大气模式湿动力框架构建与跨尺度模拟精度研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
三维动态自适应网格大气模式湿动力框架构建与跨尺度模拟精度研究
- 批准号:42275165
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
基于链式流体连接刚度的框架结构变形模式的自适应抗震控制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
多任务多框架的自适应深度模型集成压缩与优化技术研究
- 批准号:62176077
- 批准年份:2021
- 资助金额:57.00 万元
- 项目类别:面上项目
相似海外基金
Mentoring investigators to improve health outcomes among persons with opioid and tobacco use disorder
指导研究人员改善阿片类药物和烟草使用障碍患者的健康结果
- 批准号:
10591521 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别:
Mentoring investigators to improve health outcomes among persons with opioid and tobacco use disorder
指导研究人员改善阿片类药物和烟草使用障碍患者的健康结果
- 批准号:
10449868 - 财政年份:2022
- 资助金额:
$ 53.31万 - 项目类别: