CAREER: Applications of Quantum Information Theory and Symmetry Principles in Quantum Physics
职业:量子信息论和对称原理在量子物理中的应用
基本信息
- 批准号:2046195
- 负责人:
- 金额:$ 50.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the last few decades, researchers in Quantum Information Science (QIS) have discovered that quantum properties of nature, such as entanglement and quantum coherence, can be used to enhance the power of computers, sensors, and other information-processing devices. The rapid progress of QIS has also had profound impacts on the rest of physics. From high-energy physics to condensed matter theory, ideas, techniques, and conceptual frameworks developed in this field have had revolutionary effects. In this project, the Principal Investigator will address a series of related QIS questions of critical importance to both theoretical physics and quantum computing. Broadly speaking, this project aims to investigate the behavior and properties of composite quantum-mechanical systems in the presence of symmetries and conservation laws. Besides applications in QIS, the project also explores the implications of this study in other areas of Physics. Specifically, the project investigates how quantum phenomena can enhance or affect the performance of thermal machines. This project also provides educational opportunities for a range of students in physics, engineering, and other computational sciences. The project consists of two main parts: The first part fully investigates the properties and applications of Local Symmetric Quantum Circuits (LSQC) and, specifically, random LSQC. The problem of characterizing LSQC is equivalent to determining the general features of the unitary time evolutions generated by local symmetric Hamiltonians. This is useful, e.g., for understanding chaos and thermalization of many-body systems with conserved charges. Although certain aspects of LSQC have been previously studied in the context of quantum chaos and Symmetry-Protected Topological (SPT) order, a broad and precise understanding of the properties of this family of circuits is still missing. A preliminary study has revealed unexpected features and the rich mathematical structure of this framework. The anticipated results have applications and implications in areas such as quantum control, quantum thermodynamics, SPT order, and quantum gravity. The second part of this project investigates quantum thermodynamics from the point of view of quantum information theory, and more specifically, the resource-theoretic approach to thermodynamics, which has been flourishing in the last ten years. The project aims to address some important shortcomings of the existing framework, namely to develop a unified theory of work and coherence distillation in the resource-theoretic framework of quantum thermodynamics, as well as experimental proposals for probing genuine quantum features of this theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年中,量子信息科学(QIS)的研究人员发现,自然的量子特性(例如纠缠和量子相干性)可用于增强计算机,传感器和其他信息处理设备的功能。 QIS的快速进步也对其余物理学产生了深远的影响。从高能物理学到在该领域开发的凝结物质理论,思想,技术和概念框架具有革命性的影响。在该项目中,主要研究者将解决一系列相关的QIS问题,这些问题对理论物理和量子计算至关重要。 从广义上讲,该项目旨在研究在符号和保护法的存在下复合量子机械系统的行为和特性。 除了在QIS中的应用外,该项目还探讨了本研究在其他物理领域的含义。 具体而言,该项目研究了量子现象如何增强或影响热机的性能。 该项目还为物理,工程和其他计算科学的学生提供了教育机会。 该项目由两个主要部分组成:第一部分充分研究了局部对称量子电路(LSQC),尤其是随机LSQC的属性和应用。表征LSQC的问题等同于确定局部对称汉密尔顿人产生的单一时间演变的一般特征。这很有用,例如,用于理解具有保守电荷的多体系统的混乱和热化。尽管以前已经在量子混乱和对称性保护拓扑(SPT)顺序的背景下研究了LSQC的某些方面,但仍然缺少对该电路家族的性质的广泛而精确的理解。一项初步研究揭示了该框架的意外特征和丰富的数学结构。预期的结果在量子控制,量子热力学,SPT顺序和量子重力等领域具有应用和影响。 该项目的第二部分从量子信息理论的角度研究了量子热力学,更具体地说,是热力学的资源理论方法,在过去的十年中一直在蓬勃发展。该项目旨在解决现有框架的一些重要缺点,即在量子热力学的资源理论框架中开发统一的工作和连贯性蒸馏理论,以及探测该理论的真实量子特征的实验性建议。该奖项颁发了NSF的法定任务,并反映了通过评估范围的范围的构成者的依据和范围的范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Restrictions on realizable unitary operations imposed by symmetry and locality
- DOI:10.1038/s41567-021-01464-0
- 发表时间:2020-03
- 期刊:
- 影响因子:19.6
- 作者:I. Marvian
- 通讯作者:I. Marvian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iman Marvian其他文献
Synthesis of Energy-Conserving Quantum Circuits with XY interaction
XY 相互作用节能量子电路的合成
- DOI:
10.1088/2058-9565/ad53fa - 发表时间:
2023 - 期刊:
- 影响因子:6.7
- 作者:
Iman Marvian;Ge Bai - 通讯作者:
Ge Bai
Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs
驱动量子系统中的希尔伯特空间遍历性:障碍和设计
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Pilatowsky;Iman Marvian;Soonwon Choi;Wen Wei Ho - 通讯作者:
Wen Wei Ho
Iman Marvian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iman Marvian', 18)}}的其他基金
Collaborative Research: FET: Medium: Robust Quantum Networks via Efficient Entanglement Distribution
合作研究:FET:介质:通过高效纠缠分布实现稳健的量子网络
- 批准号:
2106448 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
相似国自然基金
氨氢发动机尾气污染生成机制与净化技术研究(单一子课题申请)
- 批准号:
- 批准年份:2023
- 资助金额:300 万元
- 项目类别:专项基金项目
氨氢发动机尾气污染生成机制与净化技术研究(单一子课题申请)
- 批准号:T2341002
- 批准年份:2023
- 资助金额:300.00 万元
- 项目类别:专项项目
氨氢融合零碳多源混动系统基础研究(总课题申请)
- 批准号:T2341001
- 批准年份:2023
- 资助金额:900 万元
- 项目类别:专项基金项目
循环肿瘤核酸(ctNA)精准监测早期肺癌治疗后复发的研究(联合申请B)
- 批准号:82241238
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
肝癌肝移植免疫稳态维持的精准策略及选择性区域免疫耐受新靶点研究(联合申请 A)
- 批准号:82241225
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
相似海外基金
CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
- 批准号:
2410198 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
- 批准号:
2317471 - 财政年份:2022
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
- 批准号:
2144057 - 财政年份:2022
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
- 批准号:
2144356 - 财政年份:2022
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
CAREER: Quantum many-body physics beyond the Boltzmann paradigm: prethermalization, many-body localization, and their applications
职业:超越玻尔兹曼范式的量子多体物理:预热、多体局域化及其应用
- 批准号:
2236517 - 财政年份:2022
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant