CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
基本信息
- 批准号:2044954
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The study of Geometric Variational problems is one of the oldest and most fascinating topics in Mathematics. Solutions to these problems describe equilibrium configurations of physical systems and provide canonical tools to study the geometry and topology of manifolds. Physically this can be observed for instance when three soap bubbles merge on a common line forming a corner, or studying the structure of the transition region of an iceberg melting into water. The goal of this project is to investigate the structure of such singular solutions, which is often the major stumbling block in their application to Geometry, Topology and Physics. Central to the project is an integrated plan of educational activities. This consists in the organization of a REU program and a winter Graduate School at UCSD on recent trends in Geometric Analysis. The PI will invite experts in the field for five days stays at UCSD to increase the overall activity of the seminar, expose graduate students to the most interesting results and open questions, and encourage collaborations.This project will focus on two of the most classical and influential Geometric Variational problems: Minimal Surfaces and Free-Boundary problems. Minimal surfaces provides canonical objects to study the topology of manifolds and are a good model for soap films and partition problems. Free-Boundary problems are fundamental in modeling a wide range of physical phenomena, such as phase transition (e.g. the melting of ice into water), flows with jets and cavities, shape optimization type problems and the pricing of American options. Solutions to geometric variational problems are known to exhibit singularities. In the context of Minimal Surfaces, the PI will investigate the regularity of the singular set for Area Minimizing hypersurfaces and for surfaces in any codimension, both in the integer and modulo p cases. For Free-Boundary problems, the focus will be on the structure of the set of so-called branching points for the Two-Phase problem and the Vectorial Alt-Caffarelli problem, and its relation with the set of points of high frequency of solutions to the Signorini problem. This will be achieved refining some new techniques recently introduced by the PI and his collaborators, and by developing new ones, which will have an impact in many other problems in Geometric Analysis. One of the major goals of the REU program and the winter Graduate School is to introduce undergraduate and graduate students to these problems and techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何变分问题的研究是数学中最古老、最迷人的课题之一。 这些问题的解决方案描述了物理系统的平衡配置,并提供了研究流形几何和拓扑的规范工具。 在物理上,例如当三个肥皂泡合并在一条公共线上形成一个角时,或者研究冰山融化成水的过渡区域的结构时,可以观察到这一点。 该项目的目标是研究此类奇异解决方案的结构,这通常是其在几何、拓扑和物理应用中的主要障碍。该项目的核心是教育活动的综合计划。这包括在 UCSD 组织 REU 项目和冬季研究生院,研究几何分析的最新趋势。 PI将邀请该领域的专家在UCSD停留五天,以增加研讨会的整体活动,让研究生接触到最有趣的结果和开放性问题,并鼓励合作。该项目将重点关注两个最经典和最前沿的领域。有影响力的几何变分问题:最小曲面和自由边界问题。 最小曲面提供了研究流形拓扑的规范对象,并且是肥皂膜和分区问题的良好模型。自由边界问题是模拟各种物理现象的基础,例如相变(例如冰融化成水)、射流和空腔流动、形状优化类型问题和美式期权定价。 众所周知,几何变分问题的解决方案表现出奇点。 在最小曲面的背景下,PI 将研究面积最小化超曲面和任何余维曲面的奇异集的规律性,无论是整数还是模 p 情况。对于自由边界问题,重点是两相问题和矢量 Alt-Caffarelli 问题的所谓分支点集的结构,以及它与解的高频点集的关系。西格诺里尼问题。这将通过改进 PI 及其合作者最近引入的一些新技术以及开发新技术来实现,这将对几何分析中的许多其他问题产生影响。 REU 项目和冬季研究生院的主要目标之一是向本科生和研究生介绍这些问题和技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monotonicity Formulas in the Calculus of Variation
变分法中的单调性公式
- DOI:10.1090/noti2569
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Spolaor, Luca
- 通讯作者:Spolaor, Luca
Singular behavior and generic regularity of min-max minimal hypersurfaces
最小-最大最小超曲面的奇异行为和一般规律
- DOI:10.15781/j4aj-kd66
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chodosh, Otis;Liokumovich, Yevgeny;Spolaor, Luca
- 通讯作者:Spolaor, Luca
The Riemannian quantitative isoperimetric inequality
黎曼定量等周不等式
- DOI:10.4171/jems/1223
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Chodosh, Otis;Engelstein, Max;Spolaor, Luca
- 通讯作者:Spolaor, Luca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Spolaor其他文献
Luca Spolaor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Spolaor', 18)}}的其他基金
Singularities in Geometric Variational Problems
几何变分问题中的奇点
- 批准号:
1951070 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Singularities in Geometric Variational Problems
几何变分问题中的奇点
- 批准号:
1810645 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
为了美好的生活而工作:虚拟化团队工作模式下员工工作家庭平衡的新思路
- 批准号:72372056
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
互联网能使生活更美好吗?基于互联网背景的工作-生活渗透对员工幸福感的影响研究
- 批准号:71872130
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
控制厚皮甜瓜花性型基因“A“的精细构图及标记辅助育种
- 批准号:30471113
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Air Pollution, Multidimensional Behavior, and Neuroimaging in Children with Neurodevelopmental Disorders
空气污染、多维行为和神经发育障碍儿童的神经影像学
- 批准号:
10644622 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Effects of Urban Chemical and Non-Chemical Stressors on Preadolescent Mental Health
城市化学和非化学压力源对青春期前心理健康的影响
- 批准号:
10813283 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Identifying disparities in air pollution-attributable cardiovascular health outcomes within a quasi-experimental framework
在准实验框架内确定空气污染导致的心血管健康结果的差异
- 批准号:
10722399 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Impact of ambient PM2.5 concentrations on fear extinction recall, frontolimbic circuitry, and anxiety in adolescents
环境 PM2.5 浓度对青少年恐惧消退回忆、额边缘回路和焦虑的影响
- 批准号:
10749203 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Mechanisms of Thyroid Autoimmunity in Checkpoint Immunotherapy
检查点免疫治疗中甲状腺自身免疫的机制
- 批准号:
10283894 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别: