Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
基本信息
- 批准号:2021734
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-07 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are the 'workhorse' molecules of life, they participate in nearly every activity that cells carry out. It follows that understanding protein structure and function is essential to understanding life processes, and how to control or modify them. Biochemistry and biophysics experiments give the most accurate data on protein structure and function, but the experiments are often expensive and too specialized for many of the cell and molecular biologists focused on a particular interesting protein. This means that reliable computational predictions of protein structure and function are in high demand. These techniques are also specialized but can be automated, which is the focus of this project, which aims to develop an integrated platform for high-resolution protein structure prediction and structure-based function annotation that is accessible from the Web. This resource will significantly enhance studies of individual proteins as well as processes in cellular biology and other biological sciences. Through the collaboration of the two institutions, students at NCAT will learn state of the art high performance computing methods, and workshops at both institutions will provide greater understanding of the capabilities of the new resource. Proteins are complex components of biological systems, and studies on their structure and function often require multiple approaches to measurement or modeling. Many of the advanced computer algorithms used in this modeling are highly specialized, involving a number of complicated processes for each aspect of the protein modeling. Biologists whose primary interest is the final result often cannot determine which algorithm or pipeline to choose, how to enter parameters, or how to interpret the resulting models. While continuing to improve the accuracy of the core algorithms in protein structure prediction and structure-based function annotation, this project will also make improvements to domain parsing and assembly, to improve the quality of complex protein structure and function modeling. Another major focus of this project is to develop new protocols that automatically guide protein targets to the most suitable pipelines. In conjunction with this there will be new confidence scoring systems, both global and local, to assist biological users as they interpret the modeling results. In addition, advanced parallel computing and graphic processor unit techniques will be implemented in order to accelerate the pipelines and reduce user's waiting time. New opportunities will be made for improving educational outcomes, in particular for women and minority students, in both University of Michigan and the North Carolina A&T State University. The on-line protein modeling system will be accessible to the community at http://zhanglab.ccmb.med.umich.edu.
蛋白质是生命的“主力”分子,它们几乎参与细胞进行的每项活动。因此,了解蛋白质的结构和功能对于了解生命过程以及如何控制或修改它们至关重要。生物化学和生物物理学实验提供了有关蛋白质结构和功能的最准确数据,但这些实验通常成本高昂,而且对于许多专注于特定有趣蛋白质的细胞和分子生物学家来说过于专业。这意味着对蛋白质结构和功能的可靠计算预测的需求很高。这些技术也是专业化的,但可以自动化,这是该项目的重点,该项目旨在开发一个可从网络访问的高分辨率蛋白质结构预测和基于结构的功能注释的集成平台。该资源将显着加强对单个蛋白质以及细胞生物学和其他生物科学过程的研究。通过两个机构的合作,NCAT 的学生将学习最先进的高性能计算方法,两个机构的研讨会将让人们更好地了解新资源的功能。蛋白质是生物系统的复杂组成部分,对其结构和功能的研究通常需要多种测量或建模方法。该建模中使用的许多先进计算机算法都是高度专业化的,涉及蛋白质建模各个方面的许多复杂过程。主要兴趣是最终结果的生物学家通常无法确定选择哪种算法或流程、如何输入参数或如何解释生成的模型。在继续提高蛋白质结构预测和基于结构的功能注释等核心算法准确性的同时,该项目还将对域解析和组装进行改进,以提高复杂蛋白质结构和功能建模的质量。该项目的另一个主要重点是开发新的协议,自动引导蛋白质目标到最合适的管道。与此相结合的是,将有新的全局和本地置信度评分系统,以帮助生物用户解释建模结果。此外,还将实施先进的并行计算和图形处理器单元技术,以加速管道并减少用户的等待时间。 密歇根大学和北卡罗来纳州 A&T 州立大学将创造新的机会来改善教育成果,特别是女性和少数族裔学生的教育成果。社区可通过 http://zhanglab.ccmb.med.umich.edu 访问在线蛋白质建模系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dukka KC其他文献
SVM-GlutarySite: A Support Vector Machine-Based Prediction of Glutarylation Sites from Protein Sequences
SVM-GlutarySite:基于支持向量机的蛋白质序列戊二酰化位点预测
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hussam Albarakati; Hiroto Saigo; Robert Newman;Dukka KC - 通讯作者:
Dukka KC
Dukka KC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dukka KC', 18)}}的其他基金
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
- 批准号:
2215734 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
- 批准号:
2210356 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
- 批准号:
1901086 - 财政年份:2019
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
- 批准号:
2003019 - 财政年份:2019
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
EAGER: A novel approach to improve template-based multi-domain protein structure prediction
EAGER:一种改进基于模板的多域蛋白质结构预测的新方法
- 批准号:
1647884 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
1564606 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
相似国自然基金
蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
- 批准号:32370331
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
- 批准号:31900270
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
- 批准号:81800415
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
ABI3对阿尔茨海默病小胶质细胞吞噬功能调控及机制研究
- 批准号:81801266
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
- 批准号:31872656
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
2201182 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
- 批准号:
2034568 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
- 批准号:
2209978 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
2048296 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant