Generating Stable Repetitive Motion of Underactuated Robotic Systems Using Large-Amplitude Short-Duration Control Forces

使用大振幅短时控制力生成欠驱动机器人系统的稳定重复运动

基本信息

  • 批准号:
    2043464
  • 负责人:
  • 金额:
    $ 34.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This project will promote the progress of science and advance the national prosperity and national defense, by studying generation of stable repetitive motion for underactuated robotic systems. Underactuated mechanical systems are those that have fewer control inputs than the number of their degrees-of-freedom. Underactuation appears naturally in many systems such as missiles, satellites, underwater vehicles and biped robots. Repetitive motion is very common in underactuated robotic systems that undergo locomotion, such as underwater vehicles and biped robots, and maintaining stability is paramount for safe and reliable operation. The objective of this research is to generate stable repetitive motion of underactuated robotic systems by incorporating large-amplitude, short-duration control forces, commonly referred to as impulsive forces. Although the effect of impulsive forces has been studied in diverse dynamical systems, the majority of the studies have been limited to theoretical investigations. This research will have a significant experimental component and will translate impulsive control of dynamical systems from theory to practice by addressing the challenges of implementation. In addition to scientific and technological advances, this project will have broad impact through integration of research and education, diversity, and outreach. The project will provide research experience for undergraduate students and dissertation topics for graduate students and thereby contribute towards the development of the future generation of engineers and academics.Repetitive motion is common in underactuated robotic systems and their ability to reject disturbances depends on the stability property of the orbit. This research will eliminate the limitations of current approaches to orbital stabilization of underactuated systems by including impulsive inputs in the set of admissible controls. For underactuated systems that are not subjected to impact, current approaches require controllability of the system to be checked at every point on the orbit and controller gains to be computed online by solving a periodic Ricatti differential equation. The approach in this research, which uses both continuous and impulsive inputs, will result in a linear time-invariant system and reduce the computational cost and complexity of control design. It will also allow estimation of the region of attraction around the orbit, which will be used to determine the optimal location for application of the impulsive inputs. To consider systems that are subjected to impact, the research will focus on bipeds, where both continuous and impulsive inputs will be used for gait stabilization; and the devil-stick, where only impulsive inputs will used. For bipeds, current approaches use numerical methods to search for stable gaits. This research will design nominal gaits analytically. It will be possible to easily check the stability and controllability of a nominal gait and tune controller parameters to obtain controllable gaits. Impact-free nominal gaits will ensure that energy loss and hardware wear and tear due to impact will be minimized. For the devil-stick, purely impulsive control will be designed for a variety of juggling problems. The analytical and experimental investigations will lead to new modalities of non-prehensile manipulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过研究为不足的机器人系统的稳定重复运动来促进科学的进步,并促进国家繁荣和国防的进步。机械系统不足的机械系统的控制输入量少于其自由度的数量。在许多系统中,诸如导弹,卫星,水下车辆和润皮机器人等许多系统中显然显然是不足的。重复运动在经历运动的不足的机器人系统中非常普遍,例如水下车辆和润滑机器人,并且保持稳定性对于安全可靠的操作至关重要。这项研究的目的是通过结合大量振幅,短次持续控制力(通常称为冲动力)来产生不足的机器人系统的稳定重复运动。尽管在各种动力学系统中已经研究了冲动力的效果,但大多数研究仅限于理论研究。这项研究将具有重要的实验组成部分,并将通过解决实施挑战来转化从理论到实践的动态系统的冲动控制。除了科学和技术进步外,该项目还将通过整合研究和教育,多样性和外展产生广泛的影响。该项目将为本科生提供研究经验,并为研究生提供论文主题,从而为未来一代工程师和学者的发展做出贡献。重复运动在不足的机器人系统中很常见,拒绝障碍的能力取决于其稳定性,取决于稳定性。轨道。这项研究将消除当前方法通过在一组可允许的控制中加入冲动输入,从而消除流动系统不足系统的轨道稳定方法的局限性。对于未遭受影响的不足的系统,当前的方法需要在轨道和控制器收益上的每个点进行可控性,以通过求解定期的Ricatti微分方程来在线计算。使用连续和冲动输入的这项研究中的方法将导致线性时间流动系统,并降低控制设计的计算成本和复杂性。它还将允许估计轨道周围的吸引区域,该区域将用于确定用于应用冲动输入的最佳位置。为了考虑受到影响的系统,研究将集中在双皮子上,其中连续和冲动输入都将用于步态稳定。还有魔鬼棒,只能使用冲动输入。对于双头,当前的方法使用数值方法来搜索稳定的步态。这项研究将通过分析设计名义步态。可以轻松检查名义步态和调谐控制器参数的稳定性和可控性,以获得可控步态。无冲击的标称步态将确保能量损失和撞击引起的硬件磨损。对于恶魔棒,纯粹的冲动控制将是为各种杂耍问题而设计的。分析和实验研究将导致非划分操作的新方式。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-prehensile manipulation of a devil-stick: planar symmetric juggling using impulsive forces
  • DOI:
    10.1007/s11071-021-06254-0
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    N. Kant;R. Mukherjee
  • 通讯作者:
    N. Kant;R. Mukherjee
Stabilization of energy level sets of underactuated mechanical systems exploiting impulsive braking
  • DOI:
    10.1007/s11071-021-06831-3
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    N. Kant;R. Mukherjee;H. Khalil
  • 通讯作者:
    N. Kant;R. Mukherjee;H. Khalil
Juggling a Devil-Stick: Hybrid Orbit Stabilization Using the Impulse Controlled Poincaré Map
玩弄魔鬼棒:使用脉冲控制庞加莱图实现混合轨道稳定
  • DOI:
    10.1109/lcsys.2021.3091935
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Kant, Nilay;Mukherjee, Ranjan
  • 通讯作者:
    Mukherjee, Ranjan
Nonprehensile manipulation of a stick using impulsive forces
  • DOI:
    10.1007/s11071-022-07826-4
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Aakash Khandelwal;N. Kant;R. Mukherjee
  • 通讯作者:
    Aakash Khandelwal;N. Kant;R. Mukherjee
Design of Impact-Free Gaits for Planar Bipeds and Their Stabilization Using Impulsive Control
平面两足动物的无冲击步态设计及其使用脉冲控制的稳定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjan Mukherjee其他文献

Antagonistes de ppar gamma pour le traitement de l'obesite
肥胖症的伽马拮抗剂
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ranjan Mukherjee
  • 通讯作者:
    Ranjan Mukherjee
Reconfigurable adaptable micro-robot
可重构的适应性微型机器人
Prevention ou traitement de diabetes non insulinodependants ou de maladies cardiovasculaires avec des modulateurs ppar
非胰岛素依赖性糖尿病或心血管疾病和调节剂的预防或治疗
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Johan Auwerx;Michael R. Briggs;Ranjan Mukherjee;James R. Paterniti;B. Stael
  • 通讯作者:
    B. Stael
Generating stable periodic motion in underactuated systems in the presence of parameter uncertainty: Theory and experiments
在存在参数不确定性的欠驱动系统中生成稳定的周期运动:理论和实验
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kant;Ranjan Mukherjee
  • 通讯作者:
    Ranjan Mukherjee

Ranjan Mukherjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjan Mukherjee', 18)}}的其他基金

FW-HTF-RL: Improving Disability Inclusion in the Workforce Through Assessment and Augmentation of Individual Abilities and Workflow Redesign in Real-World Contexts
FW-HTF-RL:通过评估和增强个人能力以及现实世界中的工作流程重新设计,改善劳动力中的残疾人包容性
  • 批准号:
    2326227
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
A High Degree-of-Freedom Body-Machine Interface for Children with Severe Motor Impairments
为患有严重运动障碍的儿童提供高自由度的身体-机器接口
  • 批准号:
    1703735
  • 财政年份:
    2017
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Analysis of Large Amplitude, Short Duration Control Forces for Guiding Underactuated Mechanical Systems into Safe Operating Regions
用于引导欠驱动机械系统进入安全运行区域的大振幅、短持续时间控制力分析
  • 批准号:
    1462118
  • 财政年份:
    2015
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Synergistically Propelled Ichthyoid (SPI): Dynamics Investigation for Improved Performance
协同推进鱼状体 (SPI):提高性能的动力学研究
  • 批准号:
    1131170
  • 财政年份:
    2011
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Impulsive Control of Under-Actuated Dynamical Systems
欠驱动动力系统的脉冲控制
  • 批准号:
    0925055
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Planning a Visit to the University of Tokyo for Collaboration on Humanoid Robotics Research
计划访问东京大学,开展人形机器人研究合作
  • 批准号:
    0609094
  • 财政年份:
    2006
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Enhancing Controllability and Observability in Under-Actuated/Under-Sensed Systems through Switching: Application to Vibration Control
通过切换增强欠驱动/欠感系统的可控性和可观测性:振动控制的应用
  • 批准号:
    0409388
  • 财政年份:
    2004
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Dynamics and Control of a Self-Reconfiguring Sphere Leading to the Design of a Spherical Mobile Robot
自重构球体的动力学和控制导致球形移动机器人的设计
  • 批准号:
    9800343
  • 财政年份:
    1998
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
RIA: Repeatability in Nonholonomic Mechanical Systems
RIA:非完整机械系统的可重复性
  • 批准号:
    9796144
  • 财政年份:
    1996
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
RIA: Repeatability in Nonholonomic Mechanical Systems
RIA:非完整机械系统的可重复性
  • 批准号:
    9410157
  • 财政年份:
    1994
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant

相似国自然基金

含非金属夹杂物的陶瓷轴承粗糙表面重复接触稳定性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
利用无机修饰层提高钙钛矿太阳能电池的重复性及稳定性研究
  • 批准号:
    62005093
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
ACSL4通过FBW7调控c-Myc稳定性在促进肝癌增殖中的作用及机制研究
  • 批准号:
    81902410
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
一种新型的遗传不稳定现象-短片段DNA序列重复的分子机制的探究
  • 批准号:
    31871253
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
非稳定贴现下的重复博弈模型极限性质研究
  • 批准号:
    11701432
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the role of the E3 ubiquitin ligase UBE3B in neuronal activity
阐明 E3 泛素连接酶 UBE3B 在神经元活动中的作用
  • 批准号:
    10703223
  • 财政年份:
    2022
  • 资助金额:
    $ 34.4万
  • 项目类别:
Elucidating the role of the E3 ubiquitin ligase UBE3B in neuronal activity
阐明 E3 泛素连接酶 UBE3B 在神经元活动中的作用
  • 批准号:
    10536505
  • 财政年份:
    2022
  • 资助金额:
    $ 34.4万
  • 项目类别:
Functional Genetics Approaches to Investigate Human Evolution
研究人类进化的功能遗传学方法
  • 批准号:
    10675773
  • 财政年份:
    2021
  • 资助金额:
    $ 34.4万
  • 项目类别:
Functional Genetics Approaches to Investigate Human Evolution
研究人类进化的功能遗传学方法
  • 批准号:
    10315626
  • 财政年份:
    2021
  • 资助金额:
    $ 34.4万
  • 项目类别:
The Role of RNA Editing in the DNMTi-induced interferon response in ovarian cancer
RNA 编辑在 DNMTi 诱导的卵巢癌干扰素反应中的作用
  • 批准号:
    10437855
  • 财政年份:
    2020
  • 资助金额:
    $ 34.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了