RAPID: Quantifying turbulent mixing and heat flux in the Mackenzie Canyon and across the Beaufort continental slope in the Arctic Ocean

RAPID:量化麦肯齐峡谷和北冰洋波弗特大陆坡的湍流混合和热通量

基本信息

项目摘要

The Arctic Ocean is the one place in the world where the warm, salty waters from the Atlantic Ocean meet the colder and fresher waters of the Pacific Ocean. Because the Pacific Water is fresher, it is lighter and floats above Atlantic Water (AW), which is warm but heavy and sinks to fill the depths of the Arctic Ocean. As such, the Pacific waters act as a physical barrier that prevents warm Atlantic waters from reaching the surface where they can cause increased melting of sea ice. Because the flow of Atlantic Water is approximately ten times stronger than the flow of Pacific Water, it represents a huge potential for influencing sea ice coverage. However, because it is salty and heavy, Atlantic waters cannot reach the ocean surface unless they are actively drawn to the surface. The ocean’s tides and winds provide energy sources for lifting these heavy waters and the mechanisms for raising these waters to the surface are not well understood. This project studies how the Mackenzie Canyon - a submarine canyon - can act as a conduit to draw up the deep, warm Atlantic Water to the shallow shelves, and mix it into shallow, near-surface water masses where it may influence sea-ice processes. Redistribution of heat by turbulent mixing plays an important role in controlling the ocean climate in the Arctic. This is a unique opportunity that documents the dynamics and mechanisms during a time where ice-cover and the Arctic Ocean structure is rapidly evolving. For this project, the research team uses special custom-made mixing sensors and a commercially available acoustic instrumentation aboard an already-planned field experiment to allow characterization of the rate at which heat is being drawn to the Arctic Ocean’s surface through turbulent mixing processes. The individual processes and sources of energy responsible for this heat transfer (e.g., tides, winds, and mean flow) vary depending on how details of the forcing combine, often creating geographic hotspots of mixing that dominate the net turbulent heat fluxes. Continental slopes have been identified as one such conduit for heat. This project determines how much and by what mechanism warmer Atlantic Water (AW) is modified and upwelled due to the presence of the slope-incising topography of the Mackenzie Canyon, compared to the smoother Beaufort continental slope. Aims include providing turbulent instrumentation added to the Arctic Observing Network (AON) conductivity, temperature, and depth (CTD) survey sections to estimate turbulent dissipation rate and heat fluxes within the canyon and across the AON hydrographic transects of the Beaufort Sea, where there are relatively few known turbulence observations. As a result of this work, the project obtains a comprehensive map of the turbulent heat flux and dissipation rate across the Beaufort slope via the AON transects and within the Mackenzie Canyon. This work is important for measuring ocean dynamics and increases understanding of the influence of incising topography to the upward heat flux from the Atlantic Water in the Arctic Ocean. While canyons represent a small percentage of the coastline in the Arctic, this project’s measurements quantify their contribution to the modification and transport of heat in the Beaufort Sea. On a larger scale, this work contributes to refining methods for calculating turbulent quantities using two different CTD-mounted instruments in the Arctic, a region rich with warm lateral intrusions and significant heat flux across regions of variable and complex topography.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北极海是世界上一个地方的一个地方,来自大西洋的温暖,咸水会遇到太平洋的寒冷和新鲜水域。由于太平洋水更新鲜,所以它更轻,漂浮在大西洋水(AW)上方,该水温暖但沉重,下沉以填补北极海的深度。因此,太平洋水域充当物理障碍,可防止温暖的大西洋水域到达可以引起海冰融化增加的表面。由于大西洋水的流量比太平洋水的流量强约十倍,因此它代表了受影响的海冰覆盖范围的巨大潜力。但是,由于它咸而沉重,大西洋水域无法到达海洋表面,除非它们被积极地吸引到表面。海洋的潮汐和风提供了抬高这些大水域的能源,将这些水升至地面的机制不太理解。该项目研究了麦肯齐峡谷(Mackenzie Canyon)如何充当渠道,将深层,温暖的大西洋水从浅层架上绘制,并将其混合到可能影响海上冰过程的浅层水质中。通过湍流混合对热量的重新分布在控制北极的海洋气候方面起着重要作用。这是一个独特的机会,可以在冰覆盖和北极海洋结构迅速发展的时期记录动态和机制。对于该项目,研究团队使用特殊的定制混合传感器和已计划的现场实验上的市售声学仪器,以通过湍流混合过程来表征将热量吸引到北极海洋表面的速率。负责这种传热的单个过程和能源(例如潮汐,风和平均流)取决于强迫的细节结合在一起,通常会产生占主导地位的净湍流热通量的混合地理热点。大陆槽已被确定为热量的管道。与光滑的Beaufort大陆插槽相比,该项目确定了多少机制和通过哪种机理变暖的大西洋水(AW)进行了修改和上升,这是由于Mackenzie Canyon的斜率构成地形而被修改和上升的。目的包括提供在北极观测网络(AON)电导率,温度和深度(CTD)调查部分中添加的湍流仪器,以估计峡谷内以及Beaufort Sea的AON水文样道内的湍流耗散率和热通量,在相对较少的已知湍流观察中。由于这项工作,该项目通过Aon crants和Mackenzie Canyon内部获得了湍流的热通量和耗散率的综合图。这项工作对于衡量海洋动力学和增加对北极海洋大西洋水对向上热通量的影响的理解非常重要。虽然峡谷代表北极的一小部分海岸线,但该项目的测量值量化了其对Beaufort Sea热量改造和运输的贡献。 On a larger scale, this work contributes to refining methods for Calculating turbulent quantities using two different CTD-mounted instruments in the Arctic, a region rich with warm lateral intrusions and significant heat flux across regions of variable and complex topography.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Amy Waterhouse的其他基金

Collaborative Research: EAGER: Microstructure Observations of Vertical Mixing and Heat Fluxes from Chipods Deployed on Arctic Observing Network Cruises
合作研究:EAGER:北极观测网络游轮上部署的 Chipods 对垂直混合和热通量的微观结构观测
  • 批准号:
    2234001
    2234001
  • 财政年份:
    2023
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Evaluating mechanisms for enhanced mixing below tropical instability waves
合作研究:评估热带不稳定波下方增强混合的机制
  • 批准号:
    2048384
    2048384
  • 财政年份:
    2021
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: A study of the energy dissipation of the internal tide as it reaches the continental slope of Tasmania
合作研究:研究内潮汐到达塔斯马尼亚大陆坡时的能量耗散
  • 批准号:
    1434722
    1434722
  • 财政年份:
    2014
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

非线性标量化的转动黑洞解及其相关性质研究
  • 批准号:
    12305064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工业机器人、异质性个体福利与政策选择——基于开放视角的量化分析
  • 批准号:
    72303118
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人-物-环交互视角下城市社区环境影响时空动态量化评价与优化策略研究
  • 批准号:
    72371072
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
石羊河上游径流水源追踪量化的模拟研究
  • 批准号:
    42301153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于影像-基因-临床多尺度弥漫性大B细胞淋巴瘤复发及预后风险精准量化评估研究
  • 批准号:
    82372025
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Effect of the centrifugal force on laminar-turbulent transition on a rotating cone
离心力对旋转锥体上层流-湍流转变的影响
  • 批准号:
    22K20406
    22K20406
  • 财政年份:
    2022
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up
Laminar flame structures and turbulent flame characteristics of ammonia flames at high temperature and high pressure conditions
高温高压条件下氨火焰的层流火焰结构和湍流火焰特性
  • 批准号:
    21H01256
    21H01256
  • 财政年份:
    2021
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Quantifying the influence of aquatic flows on turbulent exchanges at the sediment-water interface
量化水流对沉积物-水界面湍流交换的影响
  • 批准号:
    502456-2017
    502456-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Postdoctoral Fellowships
    Postdoctoral Fellowships
Quantifying the influence of aquatic flows on turbulent exchanges at the sediment-water interface
量化水流对沉积物-水界面湍流交换的影响
  • 批准号:
    502456-2017
    502456-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Postdoctoral Fellowships
    Postdoctoral Fellowships
Quantifying the influence of aquatic flows on turbulent exchanges at the sediment-water interface
量化水流对沉积物-水界面湍流交换的影响
  • 批准号:
    502456-2017
    502456-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 7.13万
    $ 7.13万
  • 项目类别:
    Postdoctoral Fellowships
    Postdoctoral Fellowships